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2.5 The gradient method for smooth and strongly con-

vex functions

Let us consider the gradient method with constant step h.

Theorem 2.5.1 Let f € F;'(R"), and 0 < h < 2. The gradient method with constant

step generates a sequence which converges as follows:
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where the last inequality follows from Theorem 2.1.8.
Therefore, rpi 1 < rp < -+ < 7p.
Now

f@e) < flr) + (f'(2n), @l — k) + g”wkﬂ - wk”Q
= flxr) = wllf'(@)]” < far),

where w = h(1 — £h). Denoting by Ay = f(x)) — f(x*), from the convexity of f,

Ay = fzg) = f(2") < (@), 20— 27) < || f (@) |lre < |1 (2) 0.

Combining (2.1) and (2.2),
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Thus dividing by AgpAgiq,
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Summing up these inequalities we get
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To obtain the optimal step size, it is sufficient to find the maximum of the function

w = w(h) = h(1 — £h) which is h* = 1/L.
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Corollary 2.5.2 If f € F;'(R"), the gradient method with constant step h = 1/L yields

< 2L||xo — z*|?
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Proof:  Left for exercise. 1

Theorem 2.5.3 Let f € S}L’}L(R”), and 0 < h < ﬁ The gradient method with constant
step generates a sequence which converges as follows:
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Proof:  Denote ry = ||x;, — *||. Then
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from Theorem 2.3.7, and proves the first two inequalities.
Now, from Theorem 2.1.8,

IN

flay) = f(&) = (f(x"), 2 —2") < Sl — ||

Theorem 2.5.4 In the special case of a strongly convex quadratic function f(x) =
(a,z) + a with A\;(A) = L > \,(A) = 1 > 0, we can obtain
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for the gradient method with exact line search.
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Proof:  See [YUAN2010]. 1

e Note that the previous result for the gradient method Theorem 1.5.5 was only a local
result.

e Comparing the rate of convergence of the gradient method for the classes F IL’I(]R")

and S}A”IL(R”), Theorems 2.5.1 (Corollary 2.5.2) and 2.5.3 with their lower complexity
bounds, Theorems 2.2.1 and 2.4.1, respectively, we possible have a huge gap.

2.6 The optimal gradient method

Definition 2.6.1 A pair of sequences {¢x(x)}72, and {A\g}72, with Ay > 0 is called an
estimate sequence of the function f(x) if

>\k: - 07
and for any & € R" and any k > 0, we have
gbk(w) < (1 — )\k)f(iﬂ) + )\kqﬁg(w)

Lemma 2.6.2 Given an estimate sequence {¢y(x)}22,, {\e}72,, and if for some sequence
{xr}72, we have

fl@y) < ¢ = min, (@)

then f(zy) — f* < A(do(x”) — f(x")) — 0.
Proof: 1t follows from the definition. 1
Lemma 2.6.3 Assume that
1. f €S8, (R"), possible with s = 0 (which means that f € F'(R")).
2. ¢o(x) is an arbitrary function on R".
3. {y, )22, is an arbitrary sequence in R".
4. {ay}32, is an arbitrary sequence such that ay € (0,1), > 77, o = 00, and a_y = 0.

Then the pair of sequences {II"=1, (1 — )}, and {¢r(x)}, recursively defined as

@) = (1= an)onl@) +ar [fye) + () @ —y) + 5o~y

is an estimate sequence.
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Proof:  Let us prove by induction on k. For k =0, ¢o(x) = (1 — (1 —a_1)) f(x) +
(1 —a_1)¢o(x) since a1 = 1. Suppose that the induction hypothesis is valid for k. Since
f €S, (RY),

Pr+1(z) (1 — o) or(@) + u, [f(yk> +{f'(yp) . —yp) + gHm -y, ?
< (- ap)on(®) + anf(x)
= (1- 01— a1 - o)) fz) + (1 — ) (¢k(w) (1= (1 - o)) f(=))
< (-1 —a)h (1 - i) f@) + (1= a) L (1 — ai) o)
= (1 - Hf——l 1—- az)) flz) + Hf_—1(1 — a;)do(T).
The remaining part is left for exercise. 1

Lemma 2.6.4 Let v, ¢ € R, u € R (possible with p = 0), vo € R", and {y,}?, a given
arbitrarily sequence. Define ¢o(x) = ¢f+ 2 ||z —vol|?. If we define recursively ¢y, (x) such
as the previous lemma:

Grr1(x) = (1 — o) o) + au | flyg) + (f'(Yp), ¢ —yp) + %Hw —yil?

for an arbitrary sequence {ay}32, such that oy € (0,1) and Y- ax = co. Then ¢y (x)
preserve the canonical form
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Proof: ~ We will use again the induction hypothesis in k. Note that ¢j(x) = voI.
Now, for any k£ > 0,

¢k+1< x)=(1- ak)ﬁ/c/(m) +agppud = (1 — ap) e +app) I = eI

Therefore, ¢r.1(x) is a quadratic function of the form (2.3). From the first-order opti-
mality condition

(@) = (1 —ap)dy(x) + anf(yp) + axp(T — yy)
= (I —ap)w(x —vi) + arf'(y,) + arp(z —y,) = 0.



