2.5 The gradient method for smooth and strongly convex functions

Let us consider the gradient method with constant step h.

Theorem 2.5.1 Let $f \in \mathcal{F}_L^{1,1}(\mathbb{R}^n)$, and $0 < h < \frac{2}{L}$. The gradient method with constant step generates a sequence which converges as follows:

$$f(\boldsymbol{x}_k) - f^* \le \frac{2(f(\boldsymbol{x}_0) - f(\boldsymbol{x}^*))\|\boldsymbol{x}_0 - \boldsymbol{x}^*\|^2}{2\|\boldsymbol{x}_0 - \boldsymbol{x}^*\|^2 + kh(2 - Lh)(f(\boldsymbol{x}_0) - f(\boldsymbol{x}^*))}.$$

Proof: Denote $r_k = ||\boldsymbol{x}_k - \boldsymbol{x}^*||$. Then

$$r_{k+1}^{2} = \|\mathbf{x}_{k} - \mathbf{x}^{*} - hf'(\mathbf{x}_{k})\|^{2}$$

$$= r_{k}^{2} - 2h\langle f'(\mathbf{x}_{k}), \mathbf{x}_{k} - \mathbf{x}^{*} \rangle + h^{2}\|f'(\mathbf{x}_{k})\|^{2}$$

$$= r_{k}^{2} - 2h\langle f'(\mathbf{x}_{k}) - f'(\mathbf{x}^{*}), \mathbf{x}_{k} - \mathbf{x}^{*} \rangle + h^{2}\|f'(\mathbf{x}_{k})\|^{2}$$

$$\leq r_{k}^{2} - h\left(\frac{2}{L} - h\right)\|f'(\mathbf{x}_{k})\|^{2},$$

where the last inequality follows from Theorem 2.1.8.

Therefore, $r_{k+1} < r_k < \cdots < r_0$.

Now

$$f(\boldsymbol{x}_{k+1}) \leq f(\boldsymbol{x}_k) + \langle f'(\boldsymbol{x}_k), \boldsymbol{x}_{k+1} - \boldsymbol{x}_k \rangle + \frac{L}{2} \|\boldsymbol{x}_{k+1} - \boldsymbol{x}_k\|^2$$

$$= f(\boldsymbol{x}_k) - \omega \|f'(\boldsymbol{x}_k)\|^2 < f(\boldsymbol{x}_k), \qquad (2.1)$$

where $\omega = h(1 - \frac{L}{2}h)$. Denoting by $\Delta_k = f(\boldsymbol{x}_k) - f(\boldsymbol{x}^*)$, from the convexity of f,

$$\Delta_k = f(x_k) - f(x^*) \le \langle f'(x_k), x_k - x^* \rangle \le ||f'(x_k)|| r_k \le ||f'(x_k)|| r_0.$$
 (2.2)

Combining (2.1) and (2.2),

$$\Delta_{k+1} \le \Delta_k - \frac{\omega}{r_0^2} \Delta_k^2.$$

Thus dividing by $\Delta_k \Delta_{k+1}$,

$$\frac{1}{\Delta_{k+1}} \ge \frac{1}{\Delta_k} + \frac{\omega}{r_0^2} \frac{\Delta_k}{\Delta_{k+1}} \ge \frac{1}{\Delta_k} + \frac{\omega}{r_0^2}.$$

Summing up these inequalities we get

$$\frac{1}{\Delta_{k+1}} \ge \frac{1}{\Delta_0} + \frac{\omega}{r_0^2} (k+1).$$

To obtain the optimal step size, it is sufficient to find the maximum of the function $\omega = \omega(h) = h(1 - \frac{L}{2}h)$ which is $h^* = 1/L$.

Corollary 2.5.2 If $f \in \mathcal{F}_L^{1,1}(\mathbb{R}^n)$, the gradient method with constant step h = 1/L yields

$$f(x_k) - f(x^*) \le \frac{2L||x_0 - x^*||^2}{k+4}.$$

Proof: Left for exercise.

Theorem 2.5.3 Let $f \in \mathcal{S}_{\mu,L}^{1,1}(\mathbb{R}^n)$, and $0 < h \leq \frac{2}{\mu+L}$. The gradient method with constant step generates a sequence which converges as follows:

$$\|m{x}_k - m{x}^*\|^2 \le \left(1 - rac{2h\mu L}{\mu + L}
ight)^k \|m{x}_0 - m{x}^*\|^2.$$

If $h = \frac{2}{\mu + L}$, then

$$\|m{x}_k - m{x}^*\| \le \left(rac{L/\mu - 1}{L/\mu + 1}
ight)^k \|m{x}_0 - m{x}^*\|$$
 $f(m{x}_k) - f^* \le rac{L}{2} \left(rac{L/\mu - 1}{L/\mu + 1}
ight)^{2k} \|m{x}_0 - m{x}^*\|^2.$

Proof: Denote $r_k = \|\boldsymbol{x}_k - \boldsymbol{x}^*\|$. Then

$$r_{k+1}^{2} = \|\boldsymbol{x}_{k} - \boldsymbol{x}^{*} - hf'(\boldsymbol{x}_{k})\|^{2}$$

$$= r_{k}^{2} - 2h\langle f'(\boldsymbol{x}_{k}), \boldsymbol{x}_{k} - \boldsymbol{x}^{*}\rangle + h^{2}\|f'(\boldsymbol{x}_{k})\|^{2}$$

$$= r_{k}^{2} - 2h\langle f'(\boldsymbol{x}_{k}) - f'(\boldsymbol{x}^{*}), \boldsymbol{x}_{k} - \boldsymbol{x}^{*}\rangle + h^{2}\|f'(\boldsymbol{x}_{k})\|^{2}$$

$$\leq r_{k}^{2} - 2h\left(\frac{\mu L}{\mu + L}r_{k}^{2} + \frac{1}{\mu + L}\|f'(\boldsymbol{x}_{k}) - f'(\boldsymbol{x}^{*})\|^{2}\right) + h^{2}\|f'(\boldsymbol{x}_{k})\|^{2}$$

$$= \left(1 - \frac{2h\mu L}{\mu + L}\right)r_{k}^{2} + h\left(h - \frac{2}{\mu + L}\right)\|f'(\boldsymbol{x}_{k})\|^{2}$$

from Theorem 2.3.7, and proves the first two inequalities.

Now, from Theorem 2.1.8,

$$f(\boldsymbol{x}_k) - f(\boldsymbol{x}^*) - \langle f'(\boldsymbol{x}^*), \boldsymbol{x}_k - \boldsymbol{x}^* \rangle \le \frac{L}{2} \|\boldsymbol{x}_k - \boldsymbol{x}^*\|^2$$

 $\le \frac{L}{2} \left(\frac{L/\mu - 1}{L/\mu + 1}\right)^{2k} r_0^2.$

Theorem 2.5.4 In the special case of a strongly convex quadratic function $f(\mathbf{x}) = \frac{1}{2} \langle \mathbf{A}\mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{a}, \mathbf{x} \rangle + \alpha$ with $\lambda_1(\mathbf{A}) = L \geq \lambda_n(\mathbf{A}) = \mu > 0$, we can obtain

$$\|oldsymbol{x}_k - oldsymbol{x}^*\| \leq \left(rac{L/\mu - 1}{L/\mu + \sqrt{rac{\mu}{2L}}}
ight)^k \|oldsymbol{x}_0 - oldsymbol{x}^*\|$$

for the gradient method with exact line search.

Proof: See [YUAN2010].

- Note that the previous result for the gradient method Theorem 1.5.5 was only a local result.
- Comparing the rate of convergence of the gradient method for the classes $\mathcal{F}_L^{1,1}(\mathbb{R}^n)$ and $\mathcal{S}_{\mu,L}^{1,1}(\mathbb{R}^n)$, Theorems 2.5.1 (Corollary 2.5.2) and 2.5.3 with their lower complexity bounds, Theorems 2.2.1 and 2.4.1, respectively, we possible have a huge gap.

2.6 The optimal gradient method

Definition 2.6.1 A pair of sequences $\{\phi_k(\boldsymbol{x})\}_{k=0}^{\infty}$ and $\{\lambda_k\}_{k=0}^{\infty}$ with $\lambda_k \geq 0$ is called an estimate sequence of the function $f(\boldsymbol{x})$ if

$$\lambda_k \to 0$$
,

and for any $\boldsymbol{x} \in \mathbb{R}^n$ and any $k \geq 0$, we have

$$\phi_k(\boldsymbol{x}) \le (1 - \lambda_k) f(\boldsymbol{x}) + \lambda_k \phi_0(\boldsymbol{x}).$$

Lemma 2.6.2 Given an estimate sequence $\{\phi_k(\boldsymbol{x})\}_{k=0}^{\infty}$, $\{\lambda_k\}_{k=0}^{\infty}$, and if for some sequence $\{\boldsymbol{x}_k\}_{k=1}^{\infty}$ we have

$$f(\boldsymbol{x}_k) \le \phi_k^* \equiv \min_{\boldsymbol{x} \in \mathbb{R}^n} \phi_k(\boldsymbol{x})$$

then $f(x_k) - f^* \le \lambda_k(\phi_0(x^*) - f(x^*)) \to 0.$

Proof: It follows from the definition.

Lemma 2.6.3 Assume that

- 1. $f \in \mathcal{S}^1_{\mu}(\mathbb{R}^n)$, possible with $\mu = 0$ (which means that $f \in \mathcal{F}^1(\mathbb{R}^n)$).
- 2. $\phi_0(\boldsymbol{x})$ is an arbitrary function on \mathbb{R}^n .
- 3. $\{\boldsymbol{y}_k\}_{k=0}^{\infty}$ is an arbitrary sequence in \mathbb{R}^n .
- 4. $\{\alpha_k\}_{k=0}^{\infty}$ is an arbitrary sequence such that $\alpha_k \in (0,1)$, $\sum_{k=0}^{\infty} \alpha_k = \infty$, and $\alpha_{-1} = 0$.

Then the pair of sequences $\{\Pi_{i=-1}^{k-1}(1-\alpha_i)\}_{k=0}^{\infty}$ and $\{\phi_k(\boldsymbol{x})\}_{k=0}^{\infty}$ recursively defined as

$$\phi_{k+1}(\boldsymbol{x}) = (1 - \alpha_k)\phi_k(\boldsymbol{x}) + \alpha_k \left[f(\boldsymbol{y}_k) + \langle f'(\boldsymbol{y}_k), \boldsymbol{x} - \boldsymbol{y}_k \rangle + \frac{\mu}{2} \|\boldsymbol{x} - \boldsymbol{y}_k\|^2 \right]$$

is an estimate sequence.

Proof: Let us prove by induction on k. For k = 0, $\phi_0(\mathbf{x}) = (1 - (1 - \alpha_{-1})) f(\mathbf{x}) + (1 - \alpha_{-1})\phi_0(\mathbf{x})$ since $\alpha_{-1} = 1$. Suppose that the induction hypothesis is valid for k. Since $f \in \mathcal{S}^1_{\mu}(\mathbb{R}^n)$,

$$\phi_{k+1}(\boldsymbol{x}) = (1 - \alpha_k)\phi_k(\boldsymbol{x}) + \alpha_k \left[f(\boldsymbol{y}_k) + \langle f'(\boldsymbol{y}_k), \boldsymbol{x} - \boldsymbol{y}_k \rangle + \frac{\mu}{2} \|\boldsymbol{x} - \boldsymbol{y}_k\|^2 \right]
\leq (1 - \alpha_k)\phi_k(\boldsymbol{x}) + \alpha_k f(\boldsymbol{x})
= (1 - (1 - \alpha_k)\Pi_{i=-1}^{k-1}(1 - \alpha_i)) f(\boldsymbol{x}) + (1 - \alpha_k) \left(\phi_k(\boldsymbol{x}) - (1 - \Pi_{i=-1}^{k-1}(1 - \alpha_i)) f(\boldsymbol{x}) \right)
\leq (1 - (1 - \alpha_k)\Pi_{i=-1}^{k-1}(1 - \alpha_i)) f(\boldsymbol{x}) + (1 - \alpha_k)\Pi_{i=-1}^{k-1}(1 - \alpha_i)\phi_0(\boldsymbol{x})
= (1 - \Pi_{i=-1}^k(1 - \alpha_i)) f(\boldsymbol{x}) + \Pi_{i=-1}^k(1 - \alpha_i)\phi_0(\boldsymbol{x}).$$

The remaining part is left for exercise.

Lemma 2.6.4 Let $\gamma_0, \phi_0^* \in \mathbb{R}$, $\mu \in \mathbb{R}$ (possible with $\mu = 0$), $\mathbf{v}_0 \in \mathbb{R}^n$, and $\{\mathbf{y}_k\}_{k=0}^{\infty}$ a given arbitrarily sequence. Define $\phi_0(\mathbf{x}) = \phi_0^* + \frac{\gamma_0}{2} \|\mathbf{x} - \mathbf{v}_0\|^2$. If we define recursively $\phi_{k+1}(\mathbf{x})$ such as the previous lemma:

$$\phi_{k+1}(\boldsymbol{x}) = (1 - \alpha_k)\phi_k(\boldsymbol{x}) + \alpha_k \left[f(\boldsymbol{y}_k) + \langle f'(\boldsymbol{y}_k), \boldsymbol{x} - \boldsymbol{y}_k \rangle + \frac{\mu}{2} \|\boldsymbol{x} - \boldsymbol{y}_k\|^2 \right],$$

for an arbitrary sequence $\{\alpha_k\}_{k=0}^{\infty}$ such that $\alpha_k \in (0,1)$ and $\sum_{k=0}^{\infty} \alpha_k = \infty$. Then $\phi_{k+1}(\boldsymbol{x})$ preserve the canonical form

$$\phi_{k+1}(\mathbf{x}) = \phi_{k+1}^* + \frac{\gamma_{k+1}}{2} \|\mathbf{x} - \mathbf{v}_{k+1}\|^2$$
(2.3)

for

$$\gamma_{k+1} = (1 - \alpha_k)\gamma_k + \alpha_k \mu,
\boldsymbol{v}_{k+1} = \frac{1}{\gamma_{k+1}} [(1 - \alpha_k)\gamma_k \boldsymbol{v}_k + \alpha_k \mu \boldsymbol{y}_k - \alpha_k f'(\boldsymbol{y}_k)],
\phi_{k+1}^* = (1 - \alpha_k)\phi_k^* + \alpha_k f(\boldsymbol{y}_k) - \frac{\alpha_k^2}{2\gamma_{k+1}} \|f'(\boldsymbol{y}_k)\|^2
+ \frac{\alpha_k (1 - \alpha_k)\gamma_k}{\gamma_{k+1}} \left(\frac{\mu}{2} \|\boldsymbol{y}_k - \boldsymbol{v}_k\|^2 + \langle f'(\boldsymbol{y}_k), \boldsymbol{v}_k - \boldsymbol{y}_k \rangle\right).$$

Proof: We will use again the induction hypothesis in k. Note that $\phi_0''(\boldsymbol{x}) = \gamma_0 \boldsymbol{I}$. Now, for any $k \geq 0$,

$$\phi_{k+1}''(\boldsymbol{x}) = (1 - \alpha_k)\phi_k''(\boldsymbol{x}) + \alpha_k \mu \boldsymbol{I} = ((1 - \alpha_k)\gamma_k + \alpha_k \mu) \boldsymbol{I} = \gamma_{k+1} \boldsymbol{I}.$$

Therefore, $\phi_{k+1}(\boldsymbol{x})$ is a quadratic function of the form (2.3). From the first-order optimality condition

$$\phi'_{k+1}(\boldsymbol{x}) = (1 - \alpha_k)\phi'_k(\boldsymbol{x}) + \alpha_k f'(\boldsymbol{y}_k) + \alpha_k \mu(\boldsymbol{x} - \boldsymbol{y}_k)$$
$$= (1 - \alpha_k)\gamma_k(\boldsymbol{x} - \boldsymbol{v}_k) + \alpha_k f'(\boldsymbol{y}_k) + \alpha_k \mu(\boldsymbol{x} - \boldsymbol{y}_k) = 0.$$