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1.7 The conjugate gradient methods

The conjugate gradient methods were initially proposed for minimizing convex quadratic
functions. Consider the problem

min f(x)

xcR"

with f(z) = a+ (a,x) + 1(Az,x) and A = O. Since its minimal solution is * = —A ™ 'a,
we can rewrite f(x) as:

f(x) = a—(A:z:*,a:)—l—%(Aa:,a:)

Thus, f* = o — 3(Az*, x*) and f'(x) = A(z — x*).
Definition 1.7.1 Given a starting point xg, the linear Krylov subspaces is defined as
L, = Lin{A(zg — x%),..., A% (xy —x*)}, k>1.

We claim temporarily that the sequence of points generated by a conjugate gradient
method is defined as follows:

x, = argmin{ f(x) | * € o + Ly}, k > 1.

Lemma 1.7.2 For any k > 1, £;, = Lin{f'(x0), ..., f'(x-1)}

Proof:  Let us prove by induction hypothesis.
For k = 1, the statement is true since f'(xg) = A(xg — x*).
Suppose the claim is true for some k£ > 1. Then from the definition of the conjugate
gradient method,

k
T = T + Z )\lAZ(CCO — .’,E*)
i=1
with some \; e R, i=1,... k. Therefore,
k } k—1 _
f’(:ck) = A(.’,Uo—w*)—i-z )\iAH_l(.’BO—.’B*) = A(Cﬂo—w*)+z )\iAH_l (zco—w*)+)\kAk+1(w0—a:*).
i=1 =1
The first two terms of the last expression belongs to £ from the induction hypothesis. And

then,
Lin{ﬁk, f’(mk)} g Lln{£k7 Ak+1 (CL‘O — :c*)} = £k+1-

If the equality does not hold, f'(zx;) € L implies A*"!(xy — x*) € L}, which again implies
the equality, or A\, = 0, which implies that x; = @;_; (algorithm terminated). 1
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Lemma 1.7.3 For any k,i > 0, k # i, we have (f'(xx), f'(x;)) = 0.

Proof: Let k > i, and consider

p(A) = f (wo + Z Aﬂ”(%’l)) :

From the previous lemma, there is a A* such that @y = xo + Z?Zl A;f'(xj-1). Moreover,
A* is the minimum of the function ¢(X). Therefore,

99

o A = (@), [ (i) = 0.

Corollary 1.7.4 The sequence generated by the conjugate gradient method for the convex
quadratic function is finite.

Proof:  Since the number of orthogonal directions in R™ cannot exceed n. 1
Let us define §; = x;11 — @;. It is clear that £y = Lin{do, d1,...,0x_1}.
Lemma 1.7.5 For any k,i > 0, k # i, (Ady,d;) = 0.
Proof: Let k > i. Then

(Ady, 6;) = (A(Th1 — 1), 65) = <f/(5'3k+1) - f/(wk>7 Ty — x;) =0,

due to Lemma 1.7.3. 1

The vectors {;} are called conjugate with respect to matrix A.
Now, let us be more precise with the conjugate gradient method. We will define the
next iterations as follows:

k—1

Tpi1 = T — hi f' (k) + Z Aj0;

Jj=0

Using the previous properties, we arrive that

hioll ' () |1”

N=0 G=00 k=2 e = e ) )

(1.6)

Thus
Ti1 = T, — hipy,
where
/ 1 () ]1*Py,
= fl(xy) — '
P, = f'(zx) (f'(xr) — f'(k—1), Pr_1)
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Finally, we can present the Conjugate Gradient Method

Conjugate Gradient Method
Step 0:  Let &y € R", compute f(xo), f'(xo) and set p, := f'(xg), k:=0
Step 1:  Find xy4q := xp — hyp;, by “approximate line search” on the scalar hy,
Step 2:  Compute f(x41) and f'(@g11)
Step 3:  Compute the coefficient (x1
Step 4:  Set pri1 := f'(®rs1) — Ber1Ps, k =k + 1 and go to Step 1

The most popular choices for the coefficient G, are:

1. Hestenes-Stiefel (1952): Bri1 = <f/(<?lz§2;{/)(fﬁ?¥;:)$$k)>'

2. Fletcher-Reeves (1964): fri1 = %

3. Polak-Ribicre: [y = T8 )T (@)

4. Polak-Ribiére plus: [jy1 = max {O, <f/(w’“+1)H’?E%Y"g)_fl(wk» }

. "na 2
5. Dai-Yuan (1999): Bri1 = <f’(w|z|il()—kf+’%)m“k),pk>'

1.8 Quasi-Newton methods

The basic idea of the quasi-Newton methods is to approximate the Hessian matrix (or its
inverse) which we need to compute in the Newton method. There are of course infinitely
many ways to do so, but we choose the ones which satisty the secant equation:

Hk—f—lyk = S

where y, = f'(xp11) — f/(21), 8k = Thy1 — Tp-
The general scheme of the quasi-Newton method is as follows.

Quasi-Newton Method
Step 0:  Let @y € R", Hy := I, k := 0. Compute f(xo), f'(xo)
Step 1:  Set p, := H f'(xy)
Step 2:  Find xyy1 := xr — hip,, by “approximate line search” on the scalar hy
Step 3:  Compute f(xx41) and f'(xg11)
Step 4: Compute Hy 1 from Hy, k =k + 1 and go to Step 1

The most popular updates for Hy,, are:

1. BFGS (Broyden-Fletcher-Goldfarb-Shanno)

Huy e (1 200 gy, (poweledy |l

(sk)Tyy, (s1)Tyy, (sk)Tyy,
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2. DFP (Davidon-Fletcher-Powell)

se(se)”  Hpy(y) Hy

H = H, +
e ’ (Y1) " s (yp)"Hy,,

3. Symmetric-Rank-One
sy — Hyy,) (s, — Hyy,)"

(
H, ., =H;+
e ‘ (s, — Hyy)Ty,

In the same way for the conjugate gradient method, we can show that the quasi-Newton
method converges in finite number of iterations for a strictly convex quadratic function.
Moreover, under some strict convexity conditions at the neighborhood of the local minimum,
it is possible to show that its iterates converge super-linearly [NOCEDAL2006].

1.9 Exercises

1. In view of Theorem 1.3.4, find a twice continuously differentiable function on R"™ which
satisfies f'(x*) =0, f"(«*) = O, but * is not a local minimum of f(x).

2. Prove Lemma 1.4.5.

3. Give a geometric interpretation of the following step-size strategies:

LetO<Cl<C2<1,

e Wolfe condition

fl@y = hf'(zy)) < f@r) = crh| f' (),
(@i = hf'(2n)), ['(@r)) < coll [ ()]

e Strong Wolfe condition

flar = hf'(@p) < f@r) — cihl f ()],
(' (@r = hf'(xx)), £ (@) < c2ll f () I
4. Consider a sequence {3}, which converges to zero.
The sequence is said to converge Q-linearly if there exists a scalar p € (0, 1) such that

ﬁk+1 S 0,
Ok

for all £ sufficiently large. Q-superlinear convergence occurs when we have

lim 41—

k—o0 ﬁk
while the convergence is Q-quadratic if there is a constant C' such that
Br+1

5

<C
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for all k sufficiently large. @Q-superquadratic convergence is indicated by

lim ﬁkgl
k—o0 ﬁk‘

(a) Show that the following implications are valid: Q-superquadratic = Q-quadratic
= Q-superlinear = Q-linear.

=0.

(b) Give examples of sequences which do not imply the opposite directions in the three
cases above.

A zero converging sequence { G}, is said to converge R-linearly if it is dominated by
a Q-linearly converging sequence. That is, if there is a Q-linearly converging sequence
{6k }72 such that 0 < B < Gy.

(c) Give a sequence which is R-linearly converging but not Q-linearly converging.

Let f(x) = %:ETQm such that @ is symmetric, and indefinite. Apply the gradient
method with constant step. Show that if the starting point o, belongs to the space
spanned by the negative eigenvectors, the sequence generated by the gradient method
diverges.

In light of Theorem 1.6.3, show that under Assumption 1.6.2, if we want to obtain
|zr — *|| < &, we need an order of In(Ine™!) iterations for the Newton method.

In the Section 1.7, show that £ = {d0,81,...,0,_1}.

In the same section, arrive at the expression (1.6) for a strictly convex quadratic
function.

Show that the secant equation is valid for BFGS, DFP and symmetric-rank-one for-
mulae.

Given u,v € R" and a non-singular matrix M € R™" if 1 + v" M 'u # 0, then the

Mty M1
1+oTM tu’

(M +uv’) =M1~ (Sherman-Morrison formula)

Apply this formula to compute the inverses By, of Hy,; for BFGS, DFP and
symmetric-rank-one formulae.



Chapter 2

Smooth Convex Optimization

2.1 Smooth convex functions

Definition 2.1.1 A continuously differentiable function f(x) is called conver on R™ (no-
tation F'(R"™)) if
fy) = fl@)+ {f'(®),y —x), Vo,yecR"

if —f(x) is convex, f(x) is called concave.

Theorem 2.1.2 If f € F'(R") and f'(x*) = 0, then x* is the global minimum of f(x) on
R"™.

Proof:  Left for exercise. 1
Lemma 2.1.3 If f € F}(R™), b€ R™, and A : R" — R™, then
o(x) = f(Az +b) € F'(R").
Proof:  Left for exercise. 1

Example 2.1.4 The following functions are differentiable and convex:

1. f(z)=¢€"
2. f(z) =z, p>1

4 f(@) = |2l = (1 + |a])
5. fla) = 3L, ente®
6. f(z) = Has @) = b, p>1

Theorem 2.1.5 Let f be a continuously differentiable function. The following conditions
are equivalent:

1. feF'(R".

25
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2. flax+ (1 —a)y) <af(x)+(1—a)f(y), Ve,yeR" Vae|0,1].
3. <f/<33) - f,(y)7m - y> > 07 \V/Q'J,y € R"
Proof:  Left for exercise. 1

Theorem 2.1.6 Let f be a twice continuously differentiable function. Then f € F?(R") if
and only if
f"(x) = O, VxeR"

Proof: Let f € F*(R"), and denote &, = « + 78, 7 > 0. Then, from the previous
result

0 = (@)~ f@)w - 2) = (@) - f().8)

1 T 1!
— —/0 (f"(x+ \s)s, s)dA

F(r) - F(0)

T

where F(1 fo (f"(x + As)s, s)d\. Therefore, tending 7 to 0, we get 0 < F'(0) =
(f"(x)s, > and we have the result.
Conversely, Ve € R",

fly) = fl@)+{f(z),y — =) // (f"(x+ Ny —x))(y — ),y — x)d\dr
> flx)+ (f'(z),y —=).
1

Corollary 2.1.7 Let f be a two times continuously differentiable function. f € F»'(R")
if and only if O < f"(x) < LI, VYx € R".

Theorem 2.1.8 Let f be a continuously differentiable function in R", x,y € R", and
a € [0,1]. Then the following conditions are equivalent:

1. feFy R,

2. 0< f(y) — flx) = (f'(z),y —z) < 5llz - y|*

3. f(@) + (f'(@).y — ) + 3| (x) = fFW)II* < f(y).

4 Ff () = F))? < (f'(@) = f(y), x —y).

5. 0< (f'(=) — f'(y),z —y) < Llz — y|*.

6. flax + (1 - a)y) + 2572 /(=) — f'(W)|* < af (@) + (1 - ) f(y).

7. 0<af(z)+(1-a)f(y) - flaz+ (1 -a)y) < a(l —a)gllz -yl



