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Let us evaluate the result of one step of the gradient method.
Consider y = x − hf ′(x). From Lemma 1.4.4,

f(y) ≤ f(x) + 〈f ′(x),y − x〉 +
L

2
‖y − x‖2

= f(x) − h‖f ′(x)‖2 +
h2L

2
‖f ′(x)‖2

= f(x) − h

(

1 − h

2
L

)

‖f ′(x)‖2. (1.3)

Thus, one step of the gradient method decreases the value of the objective function at
least as follows for h∗ = 1/L.

f(y) ≤ f(x) − 1

2L
‖f ′(x)‖2.

Now, since f(xk+1) = f(xk − hkf
′(xk)), consider the Goldstein-Armijo Rule previ-

ously described.
f(xk) − f(xk+1) ≤ βhk‖f ′(xk)‖2,

and from (1.3)

f(xk) − f(xk+1) ≥ hk

(

1 − hk

2
L

)

‖f ′(xk)‖2.

Therefore, hk ≥ 2(1 − β)/L.
Also, substituting in

f(xk) − f(xk+1) ≥ αhk‖f ′(xk)‖2 ≥ 2

L
α(1 − β)‖f ′(xk)‖2.

Thus, in all three step-size strategies mentioned here, we can say that

f(xk) − f(xk+1) ≥
ω

L
‖f ′(xk)‖2

for some positive constant ω.
Summing up the above inequality we have:

ω

L

N
∑

k=0

‖f ′(xk)‖2 ≤ f(x0) − f(xN+1) ≤ f(x0) − f ∗

where f ∗ is the optimal value of the problem.
As a simple consequence we have

‖f ′(xk)‖ → 0 as k → ∞.

Finally,

g∗
N ≡ min

0≤k≤N
‖f ′(xk)‖ ≤ 1√

N + 1

[

1

ω
L(f(x0) − f ∗)

]1/2

. (1.4)
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Remark 1.5.1 g∗
N → 0, but we cannot say anything about the rate of convergence of the

sequence {f(xk)} or {xk}.

Example 1.5.2 Consider the function f(x, y) = 1
2
x2 + 1

4
y4 − 1

2
y2. (0,−1)T and (0, 1)T are

local minimal solutions, but (0, 0)T is a stationary point.
If we start the gradient method from (1, 0)T , we will only converge to the stationary

point.

We focus now on the following problem class:

Model: 1. Unconstrained minimization

2. f ∈ C1,1
L (Rn)

3. f(x) is bounded from below
Oracle: First-order black box
ε-solution: f(x̄) ≤ f(x0), ‖f ′(x̄)‖ < ǫ

From (1.4), we have

g∗
N < ε if N + 1 >

L

ωε2
(f(x0) − f ∗).

Remark 1.5.3 This is much better than the result of Theorem 1.2.3, since it does not
depend on n.

Finally, consider the following problem under Assumption 1.5.4.

min
x∈R

n
f(x)

Assumption 1.5.4

1. f ∈ C2,2
M (Rn).

2. There is a local minimum of the function f(x) at which its Hessian is positive definite.

3. We know some bound 0 < ℓ ≤ L < ∞ for the Hessian at x∗:

ℓI � f ′′(x∗) � LI.

4. Our starting point x0 is close enough to x∗.

Theorem 1.5.5 Let f(x) satisfy our assumptions above and let the starting point x0 be
close enough to a local minimum:

r0 = ‖x0 − x∗‖ < r̄ =
2ℓ

M
.

Then, the gradient method with step-size h∗ = 2/(L + ℓ) converges as follows:

‖xk − x∗‖ ≤ r̄r0

r̄ − r0

(

1 − 2ℓ

L + 3ℓ

)k

.

This rate of convergence is called (R-)linear.
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Proof: In the gradient method, the iterates are xk+1 = xk − hkf
′(xk).

Since f ′(x∗) = 0,

f ′(xk) = f ′(xk) − f ′(x∗) =

∫ 1

0

f ′′(x∗ + τ(xk − x∗))(xk − x∗)dτ = Gk(xk − x∗),

and therefore,

xk+1 − x∗ = xk − x∗ − hkGk(xk − x∗) = (I − hkGk)(xk − x∗).

Let rk = ‖xk − x∗‖. From Lemma 1.4.6,

f ′′(x∗) − τMrkI � f ′′(x∗ + τ(xk − x∗)) � f ′′(x∗) + τMrkI.

Integrating all parts from 0 to 1 and using our hypothesis,

(ℓ − rk

2
M)I � Gk � (L +

rk

2
M)I.

Therefore,
(

1 − hk(L +
rk

2
M)
)

I � I − hkGk �
(

1 − hk(ℓ −
rk

2
M)
)

I.

We arrive at
‖I − hkGk‖ ≤ max{ak(hk), bk(hk)}

where ak(h) = 1 − h(ℓ − rk

2
M) and bk(h) = h(L + rk

2
M) − 1.

Notice that ak(0) = 1 and bk(0) = −1.
Now, let us use our hypothesis that r0 < r̄.
When ak(h) = bk(h), we have 1 − h(ℓ − rk

2
M) = h(L + rk

2
M) − 1, and therefore

h∗
k =

2

L + ℓ
.

(Surprisingly, it does not depend neither on M nor rk). Finally,

rk+1 = ‖xk+1 − x∗‖ ≤
(

1 − 2

L + ℓ

(

ℓ − rk

2
M
)

)

‖xk − x∗‖.

That is,

rk+1 ≤
(

L − ℓ

L + ℓ
+

rkM

L + ℓ

)

rk.

and rk+1 < rk < r̄.
Now, let us analyze the rate of convergence. Multiplying the above inequality by M/(L+

ℓ),
Mrk+1

L + ℓ
≤ M(L − ℓ)

(L + ℓ)2
rk +

M2r2
k

(L + ℓ)2
.

Calling αk = Mrk

L+ℓ
and q = 2ℓ

L+ℓ
, we have

αk+1 ≤ (1 − q)αk + α2
k = αk(1 + αk − q) =

αk(1 − (αk − q)2)

1 − (αk − q)
. (1.5)
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Now, since rk < 2ℓ
M

, αk − q = Mrk

L+ℓ
− 2ℓ

L+ℓ
< 0, and 1 + (αk − q) = L−ℓ

L+ℓ
+ Mrk

L+ℓ
> 0. Therefore,

−1 < αk − q < 0, and (1.5) becomes ≤ αk

1+q−αk

.

1

αk+1

≥ 1 + q

αk

− 1.

q

αk+1

− 1 ≥ q(1 + q)

αk

− q − 1 = (1 + q)

(

q

αk

− 1

)

.

and then,

q

αk

− 1 ≥ (1 + q)k

(

q

α0

− 1

)

= (1 + q)k

(

2ℓ

L + ℓ

L + ℓ

Mr0

− 1

)

= (1 + q)k

(

r̄

r0

− 1

)

.

Finally, we arrive at

rk = ‖xk − x∗‖ ≤ r̄r0

r̄ − r0

(

1 − 2ℓ

L + 3ℓ

)k

.

1.6 The Newton method

Example 1.6.1 Let us apply the Newton method to find the root of the following function

φ(t) =
t√

1 + t2
.

Clearly t∗ = 0.

The Newton method will give:

tk+1 = tk −
φ(tk)

φ′(tk)
= tk − tk(1 + t2k) = −t3k.

Therefore, the method converges if |t0| < 1, it oscillates if |t0| = 1, and finally, diverges if
|t0| > 1.

Assumption 1.6.2

1. f ∈ C2,2
M (Rn).

2. There is a local minimum of the function f(x) at which its Hessian is positive definite:

f ′′(x∗) � ℓI, ℓ > 0.

3. Our starting point x0 is close enough to x∗.
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Theorem 1.6.3 Let the function f(x) satisfy the above assumptions. Suppose that the
initial starting point x0 is close enough to x∗:

‖x0 − x∗‖ < r̄ ≡ 2ℓ

3M
.

Then ‖xk − x∗‖ < r̄ for all k of the Newton method and it converges quadratically:

‖xk+1 − x∗‖ ≤ M‖xk − x∗‖2

2(ℓ − M‖xk − x∗‖) .

Proof: Consider the Newton method xk+1 = xk − [f ′′(xk)]
−1f ′(xk).

Then

xk+1 − x∗ = xk − x∗ − [f ′′(xk)]
−1f ′(xk)

= xk − x∗ − [f ′′(xk)]
−1

∫ 1

0

f ′′(x∗ + τ(xk − x∗))(xk − x∗)dτ

= [f ′′(xk)]
−1Gk(xk − x∗)

where Gk =
∫ 1

0
[f ′′(xk) − f ′′(x∗ + τ(xk − x∗))]dτ .

Let rk = ‖xk − x∗‖. Then

‖Gk‖ = ‖
∫ 1

0

[f ′′(xk) − f ′′(x∗ + τ(xk − x∗))]dτ‖

≤
∫ 1

0

‖f ′′(xk) − f ′′(x∗ + τ(xk − x∗))‖dτ

≤
∫ 1

0

M |1 − τ |rkdτ =
rk

2
M.

From Lemma 1.4.6 and from the hypothesis

f ′′(xk) � f ′′(x∗) − MrkI � (ℓ − Mrk)I.

For r0 < r̄ = 2ℓ
3M

< ℓ
M

,
‖[f ′′(x0)]

−1‖ ≤ (ℓ − Mr0)
−1.

Then

r1 ≤
Mr2

0

2(ℓ − Mr0)
.

Since r0 < r̄, Mr0

2(ℓ−Mr0)
< ℓ

3(ℓ−Mr0)
< 1, and r1 < r0. This argument is valid for all k’s.

• Comparing this result with the rate of convergence of the gradient method, we see
that the Newton method is much faster.

• Surprisingly, the region of quadratic convergence of the Newton method is almost the
same as the region of the linear convergence of the gradient method.

‖x0 − x∗‖ <
2ℓ

M
(gradient method) ‖x0 − x∗‖ <

2ℓ

3M
(Newton method)

• This justifies a standard recommendation to use the gradient method only at the
initial stage of the minimization process in order to get close to a local minimum and
then perform the Newton method to refine.


