Let us evaluate the result of one step of the gradient method.
Consider $\boldsymbol{y}=\boldsymbol{x}-h f^{\prime}(\boldsymbol{x})$. From Lemma 1.4.4,

$$
\begin{align*}
f(\boldsymbol{y}) & \leq f(\boldsymbol{x})+\left\langle f^{\prime}(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\right\rangle+\frac{L}{2}\|\boldsymbol{y}-\boldsymbol{x}\|^{2} \\
& =f(\boldsymbol{x})-h\left\|f^{\prime}(\boldsymbol{x})\right\|^{2}+\frac{h^{2} L}{2}\left\|f^{\prime}(\boldsymbol{x})\right\|^{2} \\
& =f(\boldsymbol{x})-h\left(1-\frac{h}{2} L\right)\left\|f^{\prime}(\boldsymbol{x})\right\|^{2} . \tag{1.3}
\end{align*}
$$

Thus, one step of the gradient method decreases the value of the objective function at least as follows for $h^{*}=1 / L$.

$$
f(\boldsymbol{y}) \leq f(\boldsymbol{x})-\frac{1}{2 L}\left\|f^{\prime}(\boldsymbol{x})\right\|^{2}
$$

Now, since $f\left(\boldsymbol{x}_{k+1}\right)=f\left(\boldsymbol{x}_{k}-h_{k} f^{\prime}\left(\boldsymbol{x}_{k}\right)\right)$, consider the Goldstein-Armijo Rule previously described.

$$
f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}_{k+1}\right) \leq \beta h_{k}\left\|f^{\prime}\left(\boldsymbol{x}_{k}\right)\right\|^{2}
$$

and from (1.3)

$$
f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}_{k+1}\right) \geq h_{k}\left(1-\frac{h_{k}}{2} L\right)\left\|f^{\prime}\left(\boldsymbol{x}_{k}\right)\right\|^{2}
$$

Therefore, $h_{k} \geq 2(1-\beta) / L$.
Also, substituting in

$$
f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}_{k+1}\right) \geq \alpha h_{k}\left\|f^{\prime}\left(\boldsymbol{x}_{k}\right)\right\|^{2} \geq \frac{2}{L} \alpha(1-\beta)\left\|f^{\prime}\left(\boldsymbol{x}_{k}\right)\right\|^{2} .
$$

Thus, in all three step-size strategies mentioned here, we can say that

$$
f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}_{k+1}\right) \geq \frac{\omega}{L}\left\|f^{\prime}\left(\boldsymbol{x}_{k}\right)\right\|^{2}
$$

for some positive constant ω.
Summing up the above inequality we have:

$$
\frac{\omega}{L} \sum_{k=0}^{N}\left\|f^{\prime}\left(\boldsymbol{x}_{k}\right)\right\|^{2} \leq f\left(\boldsymbol{x}_{0}\right)-f\left(\boldsymbol{x}_{N+1}\right) \leq f\left(\boldsymbol{x}_{0}\right)-f^{*}
$$

where f^{*} is the optimal value of the problem.
As a simple consequence we have

$$
\left\|f^{\prime}\left(\boldsymbol{x}_{k}\right)\right\| \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty
$$

Finally,

$$
\begin{equation*}
g_{N}^{*} \equiv \min _{0 \leq k \leq N}\left\|f^{\prime}\left(\boldsymbol{x}_{k}\right)\right\| \leq \frac{1}{\sqrt{N+1}}\left[\frac{1}{\omega} L\left(f\left(\boldsymbol{x}_{0}\right)-f^{*}\right)\right]^{1 / 2} . \tag{1.4}
\end{equation*}
$$

Remark 1.5.1 $g_{N}^{*} \rightarrow 0$, but we cannot say anything about the rate of convergence of the sequence $\left\{f\left(\boldsymbol{x}_{k}\right)\right\}$ or $\left\{\boldsymbol{x}_{k}\right\}$.

Example 1.5.2 Consider the function $f(x, y)=\frac{1}{2} x^{2}+\frac{1}{4} y^{4}-\frac{1}{2} y^{2} .(0,-1)^{T}$ and $(0,1)^{T}$ are local minimal solutions, but $(0,0)^{T}$ is a stationary point.

If we start the gradient method from $(1,0)^{T}$, we will only converge to the stationary point.

We focus now on the following problem class:

Model:	1. Unconstrained minimization		
	2. $f \in C_{L}^{1,1}\left(\mathbb{R}^{n}\right)$		
	3. $f(\boldsymbol{x})$ is bounded from below		
Oracle:	First-order black box		
ε-solution:	$f(\overline{\boldsymbol{x}}) \leq f\left(\boldsymbol{x}_{0}\right), \quad\left\\|f^{\prime}(\overline{\boldsymbol{x}})\right\\|<\epsilon$		

From (1.4), we have

$$
g_{N}^{*}<\varepsilon \quad \text { if } \quad N+1>\frac{L}{\omega \varepsilon^{2}}\left(f\left(\boldsymbol{x}_{0}\right)-f^{*}\right) .
$$

Remark 1.5.3 This is much better than the result of Theorem 1.2.3, since it does not depend on n.

Finally, consider the following problem under Assumption 1.5.4.

Assumption 1.5.4

1. $f \in C_{M}^{2,2}\left(\mathbb{R}^{n}\right)$.
2. There is a local minimum of the function $f(\boldsymbol{x})$ at which its Hessian is positive definite.
3. We know some bound $0<\ell \leq L<\infty$ for the Hessian at \boldsymbol{x}^{*} :

$$
\ell \boldsymbol{I} \preceq f^{\prime \prime}\left(\boldsymbol{x}^{*}\right) \preceq L \boldsymbol{I} .
$$

4. Our starting point \boldsymbol{x}_{0} is close enough to \boldsymbol{x}^{*}.

Theorem 1.5.5 Let $f(\boldsymbol{x})$ satisfy our assumptions above and let the starting point \boldsymbol{x}_{0} be close enough to a local minimum:

$$
r_{0}=\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|<\bar{r}=\frac{2 \ell}{M} .
$$

Then, the gradient method with step-size $h^{*}=2 /(L+\ell)$ converges as follows:

$$
\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\| \leq \frac{\bar{r} r_{0}}{\bar{r}-r_{0}}\left(1-\frac{2 \ell}{L+3 \ell}\right)^{k}
$$

This rate of convergence is called (R-)linear.

Proof: In the gradient method, the iterates are $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-h_{k} f^{\prime}\left(\boldsymbol{x}_{k}\right)$. Since $f^{\prime}\left(\boldsymbol{x}^{*}\right)=0$,

$$
f^{\prime}\left(\boldsymbol{x}_{k}\right)=f^{\prime}\left(\boldsymbol{x}_{k}\right)-f^{\prime}\left(\boldsymbol{x}^{*}\right)=\int_{0}^{1} f^{\prime \prime}\left(\boldsymbol{x}^{*}+\tau\left(\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right)\right)\left(\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right) d \tau=\boldsymbol{G}_{k}\left(\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right)
$$

and therefore,

$$
\boldsymbol{x}_{k+1}-\boldsymbol{x}^{*}=\boldsymbol{x}_{k}-\boldsymbol{x}^{*}-h_{k} \boldsymbol{G}_{k}\left(\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right)=\left(\boldsymbol{I}-h_{k} \boldsymbol{G}_{k}\right)\left(\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right)
$$

Let $r_{k}=\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|$. From Lemma 1.4.6,

$$
f^{\prime \prime}\left(\boldsymbol{x}^{*}\right)-\tau M r_{k} \boldsymbol{I} \preceq f^{\prime \prime}\left(\boldsymbol{x}^{*}+\tau\left(\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right)\right) \preceq f^{\prime \prime}\left(\boldsymbol{x}^{*}\right)+\tau M r_{k} \boldsymbol{I} .
$$

Integrating all parts from 0 to 1 and using our hypothesis,

$$
\left(\ell-\frac{r_{k}}{2} M\right) \boldsymbol{I} \preceq \boldsymbol{G}_{k} \preceq\left(L+\frac{r_{k}}{2} M\right) \boldsymbol{I} .
$$

Therefore,

$$
\left(1-h_{k}\left(L+\frac{r_{k}}{2} M\right)\right) \boldsymbol{I} \preceq \boldsymbol{I}-h_{k} \boldsymbol{G}_{k} \preceq\left(1-h_{k}\left(\ell-\frac{r_{k}}{2} M\right)\right) \boldsymbol{I} .
$$

We arrive at

$$
\left\|\boldsymbol{I}-h_{k} \boldsymbol{G}_{k}\right\| \leq \max \left\{a_{k}\left(h_{k}\right), b_{k}\left(h_{k}\right)\right\}
$$

where $a_{k}(h)=1-h\left(\ell-\frac{r_{k}}{2} M\right)$ and $b_{k}(h)=h\left(L+\frac{r_{k}}{2} M\right)-1$.
Notice that $a_{k}(0)=1$ and $b_{k}(0)=-1$.
Now, let us use our hypothesis that $r_{0}<\bar{r}$.
When $a_{k}(h)=b_{k}(h)$, we have $1-h\left(\ell-\frac{r_{k}}{2} M\right)=h\left(L+\frac{r_{k}}{2} M\right)-1$, and therefore

$$
h_{k}^{*}=\frac{2}{L+\ell} .
$$

(Surprisingly, it does not depend neither on M nor r_{k}). Finally,

$$
r_{k+1}=\left\|\boldsymbol{x}_{k+1}-\boldsymbol{x}^{*}\right\| \leq\left(1-\frac{2}{L+\ell}\left(\ell-\frac{r_{k}}{2} M\right)\right)\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\| .
$$

That is,

$$
r_{k+1} \leq\left(\frac{L-\ell}{L+\ell}+\frac{r_{k} M}{L+\ell}\right) r_{k}
$$

and $r_{k+1}<r_{k}<\bar{r}$.
Now, let us analyze the rate of convergence. Multiplying the above inequality by $M /(L+$ $\ell)$,

$$
\frac{M r_{k+1}}{L+\ell} \leq \frac{M(L-\ell)}{(L+\ell)^{2}} r_{k}+\frac{M^{2} r_{k}^{2}}{(L+\ell)^{2}}
$$

Calling $\alpha_{k}=\frac{M r_{k}}{L+\ell}$ and $q=\frac{2 \ell}{L+\ell}$, we have

$$
\begin{equation*}
\alpha_{k+1} \leq(1-q) \alpha_{k}+\alpha_{k}^{2}=\alpha_{k}\left(1+\alpha_{k}-q\right)=\frac{\alpha_{k}\left(1-\left(\alpha_{k}-q\right)^{2}\right)}{1-\left(\alpha_{k}-q\right)} \tag{1.5}
\end{equation*}
$$

Now, since $r_{k}<\frac{2 \ell}{M}, \alpha_{k}-q=\frac{M r_{k}}{L+\ell}-\frac{2 \ell}{L+\ell}<0$, and $1+\left(\alpha_{k}-q\right)=\frac{L-\ell}{L+\ell}+\frac{M r_{k}}{L+\ell}>0$. Therefore, $-1<\alpha_{k}-q<0$, and (1.5) becomes $\leq \frac{\alpha_{k}}{1+q-\alpha_{k}}$.

$$
\begin{gathered}
\frac{1}{\alpha_{k+1}} \geq \frac{1+q}{\alpha_{k}}-1 \\
\frac{q}{\alpha_{k+1}}-1 \geq \frac{q(1+q)}{\alpha_{k}}-q-1=(1+q)\left(\frac{q}{\alpha_{k}}-1\right)
\end{gathered}
$$

and then,

$$
\frac{q}{\alpha_{k}}-1 \geq(1+q)^{k}\left(\frac{q}{\alpha_{0}}-1\right)=(1+q)^{k}\left(\frac{2 \ell}{L+\ell} \frac{L+\ell}{M r_{0}}-1\right)=(1+q)^{k}\left(\frac{\bar{r}}{r_{0}}-1\right) .
$$

Finally, we arrive at

$$
r_{k}=\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\| \leq \frac{\bar{r} r_{0}}{\bar{r}-r_{0}}\left(1-\frac{2 \ell}{L+3 \ell}\right)^{k}
$$

1.6 The Newton method

Example 1.6.1 Let us apply the Newton method to find the root of the following function

$$
\phi(t)=\frac{t}{\sqrt{1+t^{2}}} .
$$

Clearly $t^{*}=0$.
The Newton method will give:

$$
t_{k+1}=t_{k}-\frac{\phi\left(t_{k}\right)}{\phi^{\prime}\left(t_{k}\right)}=t_{k}-t_{k}\left(1+t_{k}^{2}\right)=-t_{k}^{3} .
$$

Therefore, the method converges if $\left|t_{0}\right|<1$, it oscillates if $\left|t_{0}\right|=1$, and finally, diverges if $\left|t_{0}\right|>1$.

Assumption 1.6.2

1. $f \in C_{M}^{2,2}\left(\mathbb{R}^{n}\right)$.
2. There is a local minimum of the function $f(\boldsymbol{x})$ at which its Hessian is positive definite:

$$
f^{\prime \prime}\left(\boldsymbol{x}^{*}\right) \succeq \ell \boldsymbol{I}, \quad \ell>0 .
$$

3. Our starting point \boldsymbol{x}_{0} is close enough to \boldsymbol{x}^{*}.

Theorem 1.6.3 Let the function $f(\boldsymbol{x})$ satisfy the above assumptions. Suppose that the initial starting point \boldsymbol{x}_{0} is close enough to \boldsymbol{x}^{*} :

$$
\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|<\bar{r} \equiv \frac{2 \ell}{3 M} .
$$

Then $\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|<\bar{r}$ for all k of the Newton method and it converges quadratically:

$$
\left\|\boldsymbol{x}_{k+1}-\boldsymbol{x}^{*}\right\| \leq \frac{M\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|^{2}}{2\left(\ell-M\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|\right)}
$$

Proof: Consider the Newton method $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-\left[f^{\prime \prime}\left(\boldsymbol{x}_{k}\right)\right]^{-1} f^{\prime}\left(\boldsymbol{x}_{k}\right)$.
Then

$$
\begin{aligned}
\boldsymbol{x}_{k+1}-\boldsymbol{x}^{*} & =\boldsymbol{x}_{k}-\boldsymbol{x}^{*}-\left[f^{\prime \prime}\left(\boldsymbol{x}_{k}\right)\right]^{-1} f^{\prime}\left(\boldsymbol{x}_{k}\right) \\
& =\boldsymbol{x}_{k}-\boldsymbol{x}^{*}-\left[f^{\prime \prime}\left(\boldsymbol{x}_{k}\right)\right]^{-1} \int_{0}^{1} f^{\prime \prime}\left(\boldsymbol{x}^{*}+\tau\left(\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right)\right)\left(\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right) d \tau \\
& =\left[f^{\prime \prime}\left(\boldsymbol{x}_{k}\right)\right]^{-1} \boldsymbol{G}_{k}\left(\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right)
\end{aligned}
$$

where $\boldsymbol{G}_{k}=\int_{0}^{1}\left[f^{\prime \prime}\left(\boldsymbol{x}_{k}\right)-f^{\prime \prime}\left(\boldsymbol{x}^{*}+\tau\left(\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right)\right)\right] d \tau$.
Let $r_{k}=\left\|\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right\|$. Then

$$
\begin{aligned}
\left\|\boldsymbol{G}_{k}\right\| & =\left\|\int_{0}^{1}\left[f^{\prime \prime}\left(\boldsymbol{x}_{k}\right)-f^{\prime \prime}\left(\boldsymbol{x}^{*}+\tau\left(\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right)\right)\right] d \tau\right\| \\
& \leq \int_{0}^{1}\left\|f^{\prime \prime}\left(\boldsymbol{x}_{k}\right)-f^{\prime \prime}\left(\boldsymbol{x}^{*}+\tau\left(\boldsymbol{x}_{k}-\boldsymbol{x}^{*}\right)\right)\right\| d \tau \\
& \leq \int_{0}^{1} M|1-\tau| r_{k} d \tau=\frac{r_{k}}{2} M
\end{aligned}
$$

From Lemma 1.4.6 and from the hypothesis

$$
f^{\prime \prime}\left(\boldsymbol{x}_{k}\right) \succeq f^{\prime \prime}\left(\boldsymbol{x}^{*}\right)-M r_{k} \boldsymbol{I} \succeq\left(\ell-M r_{k}\right) \boldsymbol{I} .
$$

For $r_{0}<\bar{r}=\frac{2 \ell}{3 M}<\frac{\ell}{M}$,

$$
\left\|\left[f^{\prime \prime}\left(\boldsymbol{x}_{0}\right)\right]^{-1}\right\| \leq\left(\ell-M r_{0}\right)^{-1}
$$

Then

$$
r_{1} \leq \frac{M r_{0}^{2}}{2\left(\ell-M r_{0}\right)}
$$

Since $r_{0}<\bar{r}, \quad \frac{M r_{0}}{2\left(\ell-M r_{0}\right)}<\frac{\ell}{3\left(\ell-M r_{0}\right)}<1$, and $r_{1}<r_{0}$. This argument is valid for all k 's.

- Comparing this result with the rate of convergence of the gradient method, we see that the Newton method is much faster.
- Surprisingly, the region of quadratic convergence of the Newton method is almost the same as the region of the linear convergence of the gradient method.

$$
\left\|x_{0}-x^{*}\right\|<\frac{2 \ell}{M} \quad(\text { gradient method }) \quad\left\|x_{0}-x^{*}\right\|<\frac{2 \ell}{3 M} \quad \text { (Newton method) }
$$

- This justifies a standard recommendation to use the gradient method only at the initial stage of the minimization process in order to get close to a local minimum and then perform the Newton method to refine.

