Rural Telecommunications Access Technology I Cellular Systems

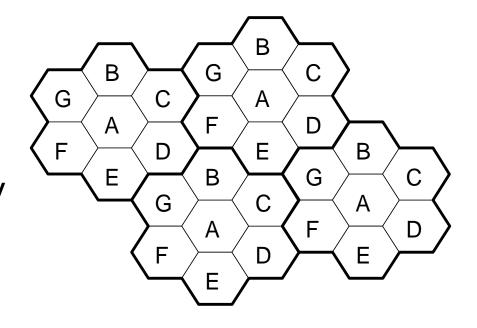
Jun-ichi TAKADA

Department of International Development Engineering

Tokyo Institute of Technology

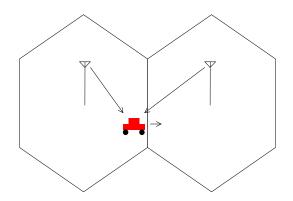
Characteristics of Radio Wave

Lower frequency

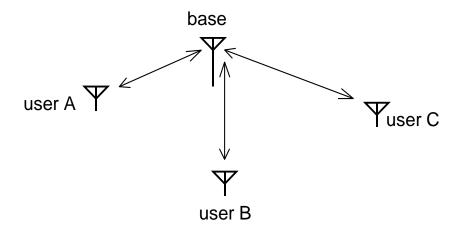

- Diffraction dominant propagation
 - Long distance
 - Shadowed area
- Narrow bandwidth
- Bigger and less directive antennas
 - Bigger antenna loss

Higher frequency

- Line-of-sight dominant propagation
 - Short distance
 - Line-of-sight
- Wide bandwidth
- Smaller and more directive antennas
 - Smaller antenna loss


Cellular Concept

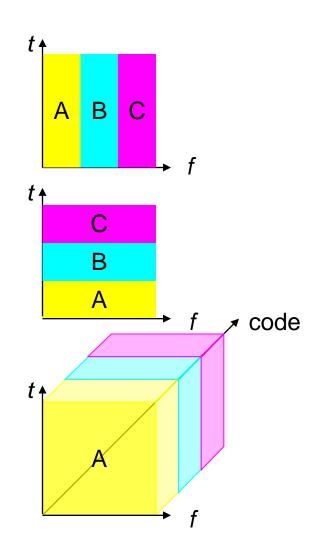
- Each base station (BS) covers a cell
- Spatial frequency reuse technique (in FDMA/TDMA)
- Reuse factor limited by co-channel interference (in FDMA/TDMA)


Handoff

Smooth transition of wireless link between adjacent cells

Multiple Access (1)

Multiple users share the same transmission channel



Multiple Access (2)

Frequency division (FDMA)

Time division (TDMA)

Code division (CDMA)

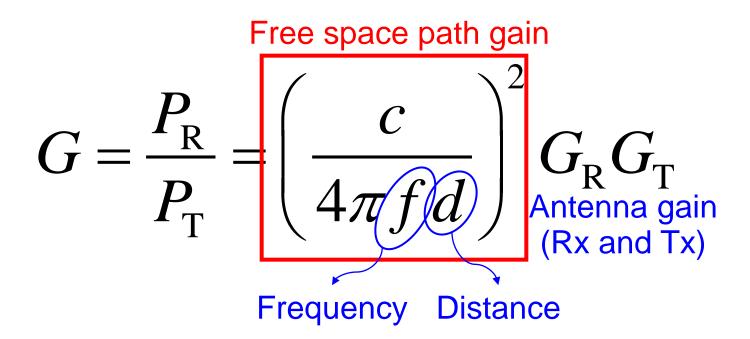
Duplex (TDD/FDD) CSMA

Filter and duplexer issue

Evolution of Cellular Systems

			Γ			3.96
	1G	2G	2.5G	3G	3.5G	4G
	(analog)	(digital)	(packet)	(multimedia)	(HS DL)	(broadband)
	1979	1993	1997	2001	2006	2011
Europe and rest	Local analog systems	GSM	GPRS	UMTS/	HSDPA	
Japan	Local system	PDC	PDC packet	WCDMA (3GPP)	=> LTE	LTE- Advanced WiMAX
USA	AMPS		IS-95	cdma2000	EV-DO	(802.16m)
	TACS	IS-136	(cdmaOne)	(3GPP2)		
		(TDMA)				

IMT-2000 (800MHz -) 2GHz

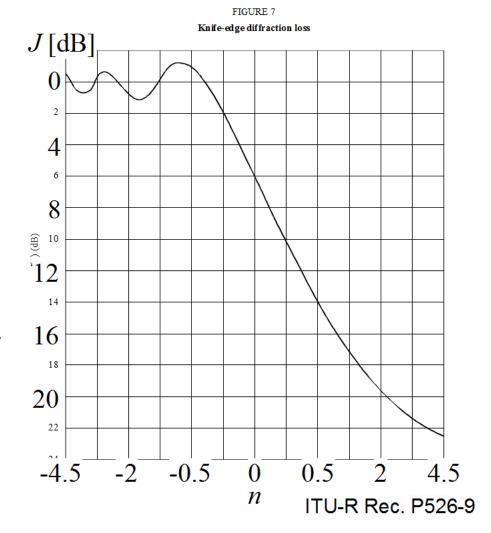

IMT-Advanced (800MHz -) 3.5GHz

GSM

- GSM = Global System for Mobile
 - European cellular standard penetrated in all over the world except Japan and South Korea
 - 3 bands are used in ordinary service
 - 800 MHz
 - 1,800 MHz
 - 1,900 MHz (mainly in USA)
 - Voice and messaging (SMS)

Free Space Propagation

Friis' Transmission Formula


Higher frequency is disadvantageous with respect to coverage.

Knife Edge Diffraction Loss

- Shadowing of LOS
 ~ -6 dB
- Shadowing of 1st
 Fresnel zone
 ~ -16 dB

n is bigger for higher frequency

$$n = \frac{h^2(d_1 + d_2)}{\lambda d_1 d_2}$$

For same *h* (depth of obstruction), *n* is smaller when frequency is lower.

GSM 400

- According to Friis' fomula, lower frequency can expect larger reach with same power.
- Replacement of NMT 450
 - NMT Nomadic Mobile Telephone
 - 1G analog cellular to 2G digital cellular

GSM 400

Advantage of GSM 400 over other GSMs

- Wider coverage area
 - -2 W terminal for 40 km radius

– GSM 400 bites the dust – What happened to GSM 400?

- Support of both Nokia and Ericsson at the beginning
- Expectation of nationwide services though a joint GSM 400/WCDMA (2GHz) network
- Nokia and Ericsson pulled out later.
- Operators were uninterested in it.
- Manufacturers are unwilling, or in some cases unable, to supply handsets in commercial volumes until there is a perceived demand.

Specific system for rural application may not be feasible commercially.

GSM Evolution

- High Speed Circuit Switched Data (HSCSD)
 - Circuit switch
- Wireless Application Protocol (WAP)
 - 1.0 (original) vs 2.0 (i-mode compatible)
- General Packet Radio Service (GPRS)
 - 115 kbit/s
- Enhanced Data for GSM Evolution (EDGE)
 - 384 kbit/s

Feedback from Students

- Countries without 3G service yet
 - Thailand: not in full function
 - Sierra Leone: not yet completed for installation
- Popularity of GSM (9) vs 3G (5)
- Within GSM
 - EDGE (5)
 - GPRS (3)
 - Both (1)
- Smart phone on GSM
 - Blackberry (3)
 - iPhone/Android/Symbian (7)