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CHAPTER 5 RESPONSE TO GENERAL 
DYNAMIC LOADING:STEP-BY-STEP 
METHOD (一般的な動的荷重に対する応
答（逐次積分法)

5.3 and 5.4 are described based on 
Kawashima’s note
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5.1 General Concept

Because superposition which is used in the 
Duhamel integration is applied only to linear elastic 
structure, it cannot be used to structures which 
induce inelastic deformation (非線形域の変形を生じる構造
物).

The step-by-step integration procedure (時刻歴応答解
析法) is a general approach to dynamic response 
analysis, and it is well suited to analysis of nonlinear 
response because it avoids any use of superposition. 

The step-by-step method provides the only 
completely general approach to analysis of nonlinear 
response; however, the method is equally valuable in 
the analysis of linear response because the same 
algorithms can be applied regardless of whether the 
structure is behaving linearly or not.
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5.2 Piecewise Exact Method (逐次厳密解)
The simplest step-by-step method for analysis is 

the so-called “piecewise exact” method. In this 
method, the load time history is divided into time 
intervals, usually defined by significant changes of 
slope in the loading history. 

It is assumed that the slope 
of the load curve remains 
constant between these points. 

It must be recognized that 
the actual loading history is 
only approximated by the 
constant slope steps. 

Thus the calculated response 
is not an exact representation 
of the true response
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However, the error can be reduced to any acceptable 
value merely by reducing the length of the time steps.

If desired, the length of the time steps can be varied 
from one interval to the next in order to achieve the 
best possible fit of the loading time history by the 
sequence of straight line segments. (直線区間の連続で
実際の外力を当てはめる(近似する))

This method is called 
step-by-step response 
analysis method. (時刻歴応
答解析法)
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The duration of the step is 
denoted by ∆t, and it spans 
from t0 to t1. 

The assumed linearly 
varying loading during the 
time step is given as

αττ += 0)( pp (5.1)

where, a is the constant, τ is 
the time valuable during the 
step, and p0 is the initial 
loading.    

The equation of motion for 
a SDOF system with viscous 
damping becomes

ατ+=++ 0pkvvcvm &&& (5.2)

Fig. 5.1
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Fig. 5.1

ατ+=++ 0pkvvcvm &&& (5.2)

The response v(τ) during 
any time step consists of a 
free vibration term vh(τ) 
plus the particular solution 
to the specific linear load 
variation vp(τ), thus

)()()( τττ ph vvv += (5.3)

{ } t
DD etBtAtv ξωωω −+= sincos)( (2.48)

where, free vibration is 
given by Eq. (2.48) as

)sincos()( τωτωτ ξωτ
DDh BAev += −
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It is easy to verify that the linearly varying 
particular solution of Eq. (5.2) is 

20 )(1)(
k
cp

k
vp

ααττ −+=

ατ+=++ 0pkvvcvm &&& (5.2)

(5.4)

τωτωττ ξωτξωτ
DD eAeAAAv sincos)( 3210

−− +++=

τωξωωτ ξωτ
DD eAAAv cos)()( 231

−−+=&

τωξωω ξωτ
DD eAA sin)( 32

−+−
(5.6)

(5.5)

Combining these expressions and evaluating A 
and B considering the initial conditions at time τ=0 
(v(0)=v0 and ,                ),  the displacement during 
the time step is given 

0)0( vv && =
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in which
32

00
2
ω
ξα

ω
−= vA 21

ω
α=A

002 AvA −= )(1
2203

ω
αξω

ω
−+= AvA

D
&

τωτωττ ξωτξωτ
DD eAeAAAv sincos)( 3210

−− +++=

τωξωωτ ξωτ
DD eAAAv cos)()( 231

−−+=&

τωξωω ξωτ
DD eAA sin)( 32

−+−
(5.6)

(5.5)

Of course, the velocity and displacement at the end 
of this time step become the initial condition for the 
next time step, and the equivalent equations can be 
used to step forward to the end of that steps. 
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Example 5.1

The response of a SDOF structure to various 
approximations of a single sine-wave loading was 
calculated by the piecewise exact method. The 
properties of the structure are shown in Fig. E5.1(a). 

Fig. E5.1(a)
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Three straight line approximations (直線近似) of the 
one and one-half cycle loading are defined by 
discrete values spaced at time intervals of (a) 
0.0075s, (b) 0.0225 s and (c) 0.045 s, respectively, 
(1/12, ¼ and ½ of the 0.09s half cycle period). 

Fig. 5.1(b)
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The calculated responses to those three loadings are 
shown in Fig. E5.1(b).

It may be concluded that the results for case (a), 
using 0.0075s load segments, are quite close to the 
exact solution.

Fig. 5.3
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5.3 Step-by-Step Dynamic Response Analysis
Step-by-step dynamic response analysis (時刻歴動的
解析法) is to use integration to step forward from the 
initial to the final conditions for each time step. 

The essential concept is represented by the following 
equations:

In order to carry out the analysis, it is necessary to 
assume how the acceleration varies during the time 
step.

)(tu&&

)( ttu ∆+&&

t tt ∆+ t ttt ∆+ tt ∆+

)(tu&

)( ttu ∆+&

)(tu

)( ttu ∆+

∫ += τ τττ 0 1)()( Cduu &&&

∫ ∫ ++∫ =+= ττ ττττττ 0 210 2 )()()( CCduCduu &&&

(5.7a)

(5.7b)

τ τ τ
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1)( Ctu =&

2)( Ctu =

From the initial conditions, we obtain the following 
expressions

Substitution of these initial conditions by Eq. 
(5.8) into Eqs. (5.7) leads to

∫ += τ τττ 0 1)()( Cduu &&&

∫ ∫ ++= τ ττττ 0 21)()( CCduu &&

(5.7a)

(5.7b)

∫+= τ τττ 0 )()()( dutuu &&&&

∫ ∫++= τ ττττ 0 )()()()( dututuu &&&

(5.9a)

(5.9b)

(5.8a)
(5.8b)
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（２）Constant Acceleration Method (一定加速度法)

)(tu&&

)( ttu ∆+&&

t tt ∆+ t ttt ∆+ tt ∆+

)(tu&

)( ttu ∆+&

)(tu

)( ttu ∆+

τ τ τ

Assuming that the acceleration between the time t 
and t+∆t is constant, and is the averaged value of the 
acceleration at the time t an d t+∆t as

Substitution of Eq. (5.10) into Eq. (5.9) leads to

2
)()()( ttutuu ∆++

= &&&&
&& τ (5.10)
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∫+= τ τττ 0 )()()( dutuu &&&&

∫ ∫++= τ ττττ 0 )()()()( dututuu &&&

(5.9a)

(5.9b)

2
)()()( ttutuu ∆++

= &&&&
&& τ (5.10)

)(
2

)( tttt uuuu ∆+++= &&&&&&
ττ

)(
4

)(
2

ttttt uuuuu ∆++++= &&&&&
τττ

(5.11a)

(5.11b)

)(tu&&

)( ttu ∆+&&

t tt ∆+ t ttt ∆+ tt ∆+

)(tu&

)( ttu ∆+&

)(tu

)( ttu ∆+

τ τ τ
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)(
2

)( tttt uuuu ∆+++= &&&&&&
ττ

)(
4

)(
2

ttttt uuuuu ∆++++= &&&&&
τττ

(5.11a)

(5.11b)

Hence, substitution of τ=∆t gives

)(
2 tttttt uutuu ∆+∆+ +
∆

+= &&&&&&

)(
4

2
ttttttt uuttuuu ∆+∆+ +

∆
+∆+= &&&&&

(5.12a)

(5.12b)

)(tu&&

)( ttu ∆+&&

t tt ∆+ t ttt ∆+ tt ∆+

)(tu&

)( ttu ∆+&

)(tu

)( ttu ∆+

τ τ τ
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)(
2 tttttt uutuu ∆+∆+ +
∆

+= &&&&&&

)(
4

2
ttttttt uuttuuu ∆+∆+ +

∆
+∆+= &&&&&

(5.12a)

(5.12b)

Eq. (5.12) shows that since we know     ,     
and     , once we know the acceleration at the time 
t+∆t,           , we can know            and           . 

This method is called the constant acceleration 
method.

tu tu&
tu&&

ttu ∆+&& ttu ∆+ttu ∆+&

)(tu&&

)( ttu ∆+&&

t tt ∆+ t ttt ∆+ tt ∆+

)(tu&

)( ttu ∆+&

)(tu

)( ttu ∆+

τ τ τ
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)(tu&&

)( ttu ∆+&&

t tt ∆+ t ttt ∆+ tt ∆+

)(tu&

)( ttu ∆+&

)(tu

)( ttu ∆+

τ τ τ

The great advantage of the constant acceleration 
method is that it is unconditionally stable (無条件に
安定); that is, the error are not amplified from one 
step to the next no matter how a long time step is 
chosen.

Consequently, the time step may be selected 
considering only the need for properly defining the 
dynamic excitation and vibration characteristics of 
the structure.
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（３）Linear Acceleration Method (線形加速度法)

)(tu&&

)( ttu ∆+&&

t tt ∆+ t ttt ∆+ tt ∆+

)(tu&

)( ttu ∆+&

)(tu

)( ttu ∆+

τ τ τ

Another assumption for the acceleration is that it 
varies linearly with the time between the time t and 
t+∆t as 

)()( tttt uu
t

uu &&&&&&&& −
∆

+= ∆+
ττ (5.13)

∫+= τ τττ 0 )()()( dutuu &&&&

∫ ∫++= τ ττττ 0 )()()()( dututuu &&&

(5.9a)

(5.9b)

Substitution of this into Eq. (5.9) yields
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)(
2

2
ttttttt uuttuuu &&&&&&&& −

∆
+∆+= ∆+∆+

)(
62

32
ttt

t
tttt uuttutuuu &&&&

&&
& −

∆
+

∆
+∆+= ∆+∆+

)(
2

)(
2

ttttt uu
t

uuu &&&&&&&& −
∆

++= ∆+
τττ

)(
62

)(
32

ttt
t

tt uuuuuu &&&&
&&

& −+++= ∆+
ττττ

)(tu&&

)( ttu ∆+&&

t tt ∆+ t ttt ∆+ tt ∆+

)(tu&

)( ttu ∆+&

)(tu

)( ttu ∆+

τ τ τ

(5.14a)

(5.14b)

Substitution of τ=∆t, one obtains

(5.15a)

(5.15b)
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Like the constant acceleration method, the linear 
acceleration method is widely used in practice.

However, in contrast to the constant acceleration 
method, the linear acceleration method is only 
conditionally stable (条件付き安定); it will be 
unstable unless

55.03 =≤∆
πT

t

However this restriction has little significance in 
the analysis of SDOF systems, because a shorter 
time step than this must be used to obtain a 
satisfactory representation of the dynamic input and 
response. 
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（４）Newmark β method (ニューマークのβ法)
A more generalized step-by-step formulation was 

proposed by Newmark, which includes the preceding 
methods as special cases, but may be applied in 
several other version. 

In the Newmark formulation , the basic integration 
equations are expressed as

{ } tuuuu tttttt ∆+−+= ∆+∆+ &&&&&& δδ )1(
2)

2
1( tuu∆tuuu ttttttt ∆

⎭
⎬
⎫

⎩
⎨
⎧ +−++= ∆+∆+ &&&&& σσ

(5.16a)

(5.16b)
It is evident in Eq. (2.10) that the factor δ provides a 

linearly varying weighting between the initial and the 
final accelerations on the change of velocity; the factor 
σ similarly provides the weighting the contributions of 
these initial and the final accelerations to the change of 
displacement. 
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)(tu&&

)( ttu ∆+&&

t tt ∆+ t ttt ∆+ tt ∆+

)(tu&

)( ttu ∆+&

)(tu

)( ttu ∆+

2
1

=δ
4
1

=σ

6
1

=σ
2
1

=δ ; Linear acceleration method
(線形加速度法)

and

and

; constant acceleration method
(一定加速度法)

{ } tuuuu tttttt ∆+−+= ∆+∆+ &&&&&& δδ )1(
2)

2
1( tuu∆tuuu ttttttt ∆

⎭
⎬
⎫

⎩
⎨
⎧ +−++= ∆+∆+ &&&&& σσ

(5.16a)

(5.16b)
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Conversion to Explicit Formulation

{ } tuuuu tttttt ∆+−+= ∆+∆+ &&&&&& δδ )1(
2)

2
1( tuu∆tuuu ttttttt ∆

⎭
⎬
⎫

⎩
⎨
⎧ +−++= ∆+∆+ &&&&& σσ

(5.16a)

(5.16b)

From Eq. (5.16b), one can  obtain

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ −−

∆
−

∆

−= ∆+
∆+ ttttttt u

t
u

t
uuu &&

&
&& σ

σ 2
11

2 (5.17)

Substituting Eq. (5.17) into Eq. (5.16a) leads to

tttt utuu &&&& ∆−+=∆+ )1( δ

⎭
⎬
⎫

⎩
⎨
⎧ ∆−−−

∆
−+ ∆+ ttttt utu
t
uu

&&& )
2
1( σ

σ
δ

(5.18)
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Equation of motion at time t+∆t is

tttttttt pkuucmu ∆+∆+∆+∆+ =++ & (5.19)

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ −−

∆
−

∆

−= ∆+
∆+ ttttttt u

t
u

t
uuu &&

&
&& σ

σ 2
11

2 (5.17)

tttt utuu &&&& ∆−+=∆+ )1( δ

⎭
⎬
⎫

⎩
⎨
⎧ ∆−−−

∆
−+ ∆+ ttttt utu
t
uu

&&& )
2
1( σ

σ
δ

(5.18)

Substitution of Eqs. (5.17) and (5.18) into Eq. 
(5.19) yields
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where,

tttt puk ∆++ = ~~
(5.20)

t
c

t
mkk

∆
+

∆
+=

σ
δ

σ 2
~

(5.21)

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ −+

∆
+

∆
+= ∆+∆+ σ

σ
σσ

ttttttt
u

t
u

t
umpp &&&

2
1~

2

⎭
⎬
⎫

⎩
⎨
⎧ ∆⎟

⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −+

∆
+ ttt utuu

t
c &&& 1

2
1

σ
δ

σ
δ

σ
δ

(5.22)

In Eqs. (5.21) and (5.22), the left hand sides are 
known quantities at the time t, therefore, Eq. (5.20) 
can be solved for ut+∆t.  
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Once ut+∆t is obtained, substitution of ut+∆t into 
Eqs. (5.17) and (5.18)  yields          and  

By repeating this process, we can calculate 
solution of Eq. (5.19). 

ttu ∆+&ttu ∆+&&

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ −−

∆
−

∆

−= ∆+
∆+ ttttttt u

t
u

t
uuu &&

&
&& σ

σ 2
11

2 (5.17)

tttt utuu &&&& ∆−+=∆+ )1( δ

⎭
⎬
⎫

⎩
⎨
⎧ ∆−−−

∆
−+ ∆+ ttttt utu
t
uu

&&& )
2
1( σ

σ
δ

(5.18)

tttttttt pkuucmu ∆+∆+∆+∆+ =++ & (5.19)
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where,

tttt puk ∆++ = ~~
(5.20)

t
c

t
mkk

∆
+

∆
+= 24~

2 (5.21a)

⎭
⎬
⎫

⎩
⎨
⎧

+
∆

+
∆

+= ∆+∆+ ttttttt u
t
u

t
umpp &&

&44~
2

⎭
⎬
⎫

⎩
⎨
⎧ +
∆

+ tt uu
t

c &
2

(5.22a)

Constant acceleration method

From Eqs. (5.20)-(5.22), substituting δ=1/2 
and σ=1/4, one obtains
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where,

tttt puk ∆++ = ~~
(5.20)

t
c

t
mkk

∆
+

∆
+= 36~

2 (5.21b)

⎭
⎬
⎫

⎩
⎨
⎧

+
∆

+
∆

+= ∆+∆+ ttttttt u
t
u

t
umpp &&

& 266~
2

⎭
⎬
⎫

⎩
⎨
⎧ ∆++
∆

+ ttt utuu
t

c &&&
2

23
(5.22b)

Linear acceleration method

From Eqs. (5.20)-(5.22), substituting δ=1/2 
and σ=1/6, one obtains 
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5.4 Incremental Formulation for 
Nonlinear Analysis (非線形解析のため
の増分形定式化)

The step-by-step procedure described above are 
suitable for analysis of linear systems. However for 
nonlinear systems, the procedure describe above 
cannot be directly applied. 

For nonlinear system, it is assumed that the physical 
properties remain constant only for short increments 
of time or deformation (微少時間の間、すなわち微少変形
の間には物理的特性が変化しないと仮定する).
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tu

tu&

tu&&

ttu ∆+

ttu ∆+&

ttu ∆+&&

Fig. 5.2
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The equilibrium of forces acting on the mass at 
the time t may be written as

tRtDtIt pfff =++ (5.23)

At the time t+∆t, eq.(7.23) can be written as

tttRttDttIt pfff ∆+∆+∆+∆+ =++ (5.24)
Subtracting Eq. (5.23) from Eq. (5.22) yields 

the incremental equation of motion (増分形の運動
方程式).

tRtDtIt pfff ∆=∆+∆+∆ (5.25)
in which,

tIttItIt umfff &&∆=−=∆ ∆+ (5.26a)

ttDttDtDt ucfff &∆=−=∆ ∆+ (5.26b)

ttRttRtRt ukfff ∆=−=∆ ∆+ (5.26c)

tttt ppp −=∆ ∆+ (5.26d)
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tttt uuu &&&&&& −≡∆ ∆+

tttt uuu &&& −≡∆ ∆+
tttt uuu −≡∆ ∆+

: Incremental acceleration (増分加速度)

: Incremental velocity (増分速度)

: Incremental displacement (増分変位)

tRtDtIt pfff ∆=∆+∆+∆ (5.25)

tIttItIt umfff &&∆=−=∆ ∆+ (5.26a)

ttDttDtDt ucfff &∆=−=∆ ∆+ (5.26b)

ttRttRtRt ukfff ∆=−=∆ ∆+ (5.26c)

tttt ppp −=∆ ∆+ (5.26d)

Substitution of Eq. (5.26) into Eq. (5.25) leads to the 
incremental equation of motion (増分形の運動方程式)

tttttt pukucum ∆=∆+∆+∆ &&& (5.23)
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{ } tuuuu tttttt ∆+−+= ∆+∆+ &&&&&& δδ )1(
2)

2
1( tuu∆tuuu ttttttt ∆

⎭
⎬
⎫

⎩
⎨
⎧ +−++= ∆+∆+ &&&&& σσ

(5.16a)

(5.16b)

Incremental acceleration, velocity and displacement 
are evaluated from Eq. (5.16) as

From Eq. (5.16b), one obtains

Rearranging Eq. (5.24),

ttttttt ut
t
tuuuuu ∆+∆+ ∆⎟

⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛

∆
∆−∆=−≡∆ &&

&
&&&

σ
δ

σ
δ

2
1

(5.26)

ttttt u
t

tuuu &&
&

&& ⎟
⎠
⎞

⎜
⎝
⎛ −−

∆

∆−∆=∆+ 1
2
1

2 σσ
(5.24)

Substituting this into Eq. (5.16a), one obtains

ttttttt u
t

tuuuuu &&
&

&&&&&&
σσ 2
1

2 −
∆

∆−∆=−≡∆ ∆+ (5.25)
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ttttttt ut
t
tuuuuu ∆+∆+ ∆⎟

⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛

∆
∆−∆=−≡∆ &&

&
&&&

σ
δ

σ
δ

2
1

(5.26)

ttttttt u
t

tuuuuu &&
&

&&&&&&
σσ 2
1

2 −
∆

∆−∆=−≡∆ ∆+ (5.25)

Eqs. (5.25) and (5.26) can be rearranged as

tttt uCuC∆uCu∆ &&&&& 431 −−= (5.27a)

tttt uCuC∆uCu∆ &&&& 542 −−= (5.27b)
in which

21
1
t

C
∆

=
σ t

C
∆

=
σ
δ

2 t
C

∆
=
σ

1
3

σ2
1

4 =C tC ∆⎟
⎠
⎞

⎜
⎝
⎛ −= 1

25 σ
δ (5.28)
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tttttt pukucum ∆=∆+∆+∆ &&& (5.23)

tttt uCuC∆uCu∆ &&&&& 431 −−= (5.27a)

tttt uCuC∆uCu∆ &&&& 542 −−= (5.27b)

Substituting Eq. (5.27) into Eq. (5,23), one obtains

ttt p∆∆uk ~~ =
in which, 

ttt cCmCkk 21
~ ++=

(5.29)

(5.30)

( ) tttt ucCmCpp &43
~ ++∆=∆

( ) tt ucCmC &&54 ++ (5.31)

Solving Eq. (5.29) for ∆ut, and then substituting 
this to Eq. (5.27), we can obtain         ,            and    ttu ∆+&

ttu ∆+&&
ttu ∆+



38

Note that C1-C5 in Eq. (5.28) can be written as

21
1
t

C
∆

=
σ t

C
∆

=
σ
δ

2 t
C

∆
=
σ

1
3

σ2
1

4 =C tC ∆⎟
⎠
⎞

⎜
⎝
⎛ −= 1

25 σ
δ (5.28)

C5

C4

C3

C2

C1

Linear 
acceleration

Constant 
acceleration

t∆/2 t∆/3

2/4 t∆ 2/6 t∆

t∆/4 t∆/6

2 3

0 2/t∆
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Example E5.2

To demonstrate a hand-solution for applying the 
linear acceleration step-by-step method, the response 
of the elastoplastic SDOF frame (弾塑性1自由度系フレー
ム) shown in Fig. E5.4 to the load history indicated is 
calculated. 

A time step of 0.1 sec is used for this analysis, which 
is much longer than desirable for good accuracy but 
will be adequate for the present purpose.

Damping coefficient is assumed to remain constant; 
hence the only nonlinearity in the system results from 
the change of stiffness as yield takes place. 



40Fig. 5.4
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The effective stiffness thus may be expressed 
from Eq. (5.29) as

cmkc
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m
t

kk tt 1.0
3

1.0
636~

22 ++=
∆

+
∆

+=

66+= tk
where, kt is either 5 kips/in or zero depending on 
whether the frame is elastic or yield.

Also the effective incremental loading is given by 
Eq. (5.31) as 

ttt cCmCkk 21
~ ++= (5.29)

( ) tttt ucCmCpp &43
~ ++∆=∆ ( ) tt ucCmC &&54 ++ (5.31)
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Table 5.1
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Fig. 5.4
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（５．２１）

σ=0.25, δ=0.5, ξ=0.05, m=150/9.8ton, 
k₀=3050.9kN/m, P₀=100kN, T₀=0.445s   

Compute responses of a SDOF system by 
Newmarkβmethod
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Δt=Tp/4の時
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Δt=Tp/8の
時
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Δt=Tp/24の
時

47

0
1

2
3
4
56



48

・Δt=Tp/4,Tp/8,Tp/24を重ね合わせたグラフ

Tp/4   
Tp/8
Tp/24


