
Assignment 1, Structural Dynamics (May 3, 2011, Submit by May 17, 2011)

Compute response of a SDOF system subjected to a harmonic excitation based on Eq. (3.19) for the following conditions.

- •Assume that initial displacement v(t) and velocity $\dot{v}(t)$ at t=0 are zero.
- •Assume that $f = \frac{\omega}{2\pi} = 0.5 Hz$ and $\bar{f} = \frac{\overline{\omega}}{2\pi} = 1 Hz$ and 2 Hz.
- •Assume that damping ratio ξ is 0.02 and 0.05

- Assume $p_0 = 100KN$ and k = 1000kN/m.
- •Compute 1) transient response displacement $v_c(t)$, 2) steady-state harmonic response displacement $v_p(t)$, and 3) general solution $v(t) = v_c(t) + v_p(t)$ for t = 0-10 s with an interval of 0.1s.

Plot the computed response like below

• Comment 1) the difference of $v_c(t)$ and $v_p(t)$, 2) the effect of \bar{f} , and 3) the effect of damping ratio • Submit to Room 511 or Room 513 (Kawashima lab) by May 17, 2011