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2.6 DAMPED FREE VIBRATIONS

®If damping is present in the system, the solution
of Eq. (2.25) Is

2
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12="5 J(ij (2.39)
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®Three types of motion are represented by this
expression, according to whether the quantity
under the square-root sign is positive, negative or

Z2ero.



Critically-Damped Systems

®If the radical term In Eq. (2.39) is set equal to
zero, it is evident that ¢/2m = w : thus, the critical

value of the damping coefficient ( ). C.,
IS
Cc =2Mw = 2-/mk (2.40)
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®The solution of Eq. (2.20) in this special case
must now be of the form

V(t) = (Gy +Gjpt)e ™ (2.42)

mv(t) +cv(t) +kv(t)=0 (2.20)

Because exp(—at) is a real function, the constants
G, and G, must also be real.

®Using the initial conditions V(0)and V(0) , these
constants can be evaluated leading to

v(t) = V(0)(1—at) +V(O)tle™™  (2.43)

®Fig. 2.9 shows the response for positive values

of v(0) and v(0) .



O y(t) = W(O0)A-t) +v(O)tle @ (2.43)
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FIGURE 2-9
Free-vibration response with critical damping.

®Note that this free response of a critically-damped

system does not include oscillation

about the zero-deflection position; instead it simply

returns to zero asymptotically in accordance with the

exponential term of Eq. (2.43).

®However a single zero-displacement crossing would

occur If the signs of the Iinitial velocity and

displacement were different from each other.



O y(t) = W(O0)A-t) +v(O)tle @ (2.43)
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FIGURE 2-9
Free-vibration response with critical damping.

®A very useful definition of the critically-damped
condition iIs that it represents the smallest amount of
damping for which no oscillation occurs in the free-

vibration response.



Undercritically-Damped Systems

®|f damping Is less than critical, that is, if c<c,
(i.e., c<2mw, it is apparent that the quantity under
the radical sign in Eqg. (2.39) is negative.

oo C J(C)Z—mz ) 36
1,2 2m '\ 2m (2.39)

®T0 evaluate the free-vibration response in this case,
It IS convenient to express damping Iin terms of a
damping ratio & ( ) which iIs the ratio of the

given damping to the critical value;

_-_ ° (2.44)
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®Introducing Eq. (2.44) into Eqg. (2.39) leads to

31’2 = —f&)i ia)D (2.45)
where
wp =@ 1—52 (2.46)
2
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== © (2.44)

Cc Z2Mw

IS the free-vibration frequency of the damped
system (damped angular natural frequency,



Damping ratio of structures

Standard bridges & =0.05-0.07
Long span bridges & =0.01-0.05

Suspension bridges and cable stayed bridges
& =0.005-0.02

Sloshing of liquid ¢ =0.001-0.01




® Note that for low damping values which are
typical of most practical structures, & < 20% ,

the frequency ratio wp / w as given by Eq.
(2.46) iIs nearly unity. The relation between

damping ratio and frequency Iis represented In
Fig. 2.10.
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FIGURE 2-10

1 -6 Relationship between frequency ratio and damping ratio.




®Using Eg. (2.21) and two values of s given by Eq.
(2.45), the free-vibration response becomes

V(t) = G1e" Dl + Ge 1Dl gt (2.47)

In which the constants G; and G, must be complex
conjugate pairs for the response v(t) to be real, i.e.,

Gl IGR -I-iG|
Gy =GR —IG;
v(t) = Ge®t (2.21)

81’2 =—§0)ii0)D (2.45)




®The same procedure used In arriving Eq. (2.31)
results in the equivalent trigonometric form

v(t) = {Acosmpt + Bsinaptle = (2.48)
where A=2G, and B=-2G,.

v(t) = Acosat + Bsin ot (2.31)

®Using the initial conditions v(0) and ,
constants A and B can be evaluated leading to

v(t) = {V(O) coswpt + (\7(0) " V(O)&‘))Sin op }e—fa)t

@wp

(2.49)



®Eg. (2.49) can be written as

v(t) = pcos(opt + <9)e_5“)t (2.50)
where, 5
D= \/v(0)2 = (V(O) J;)\;(O)‘/’ij (2.51)
_1( v(O 0
6 = —tan 1(\/( Z();://EO;@) (2.52)

v(t) = {V(O) coswpt + (V(O) " V(O)‘fszin oD }e—éa)t

@p

(2.49)




®A plot of the response of an undercritically-
damped system subjected to an initial displacement
v(0) but starting with zero velocity is shown In Fig.

2.11.

®The undedamped system oscillates about the
neutral position, with a constant circular frequency
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FIGURE 2-11
Free-vibration response of undercritically-damped system.
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Evaluation of damping ratio of structures
based on free-oscillation

®Consider any two successive positive peaks such
as v,, and v, ., which occur at time n(2z/wp)
and (n+1)(27/wp), respectively.
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FIGURE 2-11
Free-vibration response of undercritically-damped system.



Using Eqg. (2.50), the ratio of these two successive
values is given by

Vn _ o27éol op

2.53
Vh+ ( )

v(t) = pcos(awpt + 6’)e“§a)t (2.50)

®Defining the natural logarithm of Eg. (2.53), one
obtains

Vp = 278

o =lIn = 2.54
Vn+1 «/1—52 ( )

o 1S generally called logarithmic decrement of
damping ( )




®For low values of damping ratio, Eqg. (2.54) can
be approximated by

S~ 27& (2.55)

s=in'n _ %% (554

Vn+1 «/1—52

®in Eq. (2.54),
2
Vi o (275)
——=e” ®1+27&+ 4.
Vot 5 T (2.56)
@ Sufficient accuracy Is obtained by retaining only

the first two terms in the Taylor’s series
expression, in which case

= Vn = Vn+1 (2.57)
27Vn+1




®For lightly damped systems, greater accuracy in
evaluating the damping ratio can be obtained by
considering response peaks which are several
cycles apart, say m cycles; then

m Vn _ 2mrs (2.58)
Vn+m «/1—52 |
V 2
s=In—"-= ”52 (2.54)
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FIGURE 2-11
Free-vibration response of undercritically-damped system.



®Eqg. (2.58) can be simplified for low damping to an
approximation relation equivalent to Eq. (2.57):

£ Yn = Vn+m

2.59
2M 7NV +m (2:59)
Vv 2mrz
In—-" = 52 (2.58)
Vnem  (1-€
Ex Vn = Vn+1 (2.57)
v 27Vn+1

Free-vibration response of undercritically-damped system.



Why Does Eqg. (2.59) provide more accurate
estimation than Eqg. (2.57)?

Measured free oscillation decay ( ) is
not necessarily smooth, but includes noise as
shown in the following figure.
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Example 2.1

® A bridge is idealized as a rigid girder supported
by weightless columns as shown in Fig. E2.1.

®In order to evaluate the dynamic properties of
this structure, a free-vibration test is made, In
which the girder Is displaced laterally by a
hydraulic jack and then suddenly released.

Weight W= mg |—v v
77777777 p = jacking force

3 2

Fig. E2.1 Vibration test of a simple bridge



® During the jacking operation, it is observed that a
force of 20 kips (9072kg) is required to displace the
girder 0.2 in (0.508cm). After the instantaneous
release of this initial displacement, the maximum
displacement on the first return swing is only 0.16 iIn
(0.406cm) and the period of this displacement cycle
IS T=1.40 sec.

® From these data, the following dynamic properties
are determined:

®LEffective weight of the girder:

T :2—ﬂ22ﬂ /Wk =1.40s
Hence “ J 870.9 ><103kg

W (1 40) gk = 00496x386x@—1920klps
27T 0.2



® Undamped frequency of vibration:

f=to 1 _0714Hz
T 1.40

w=2m =4.48rad /s

® Damping properties:

Logarithmic decrement ¢ = In—o'20 =0.223
5 0.16
Damping ratio &~ >—= 3.55%
Damping coefficient
2 %1920

C=¢&. =¢2ma=0.0355x
Damped frequency

wp = 01— 2 = \/1-0.00355% ~ @

x4.48




® Amplitude after six cycles:

6 6
Vg = ("1) Vg = (g';gj x0.20 = 0.0524in



Overcritically damped systems

C .
® Because ¢ =—>1, solutions of Eq. (2.39) are

S12 =—cot o EX —1=—(otd (2.60)

In which
= \£% -1 (2.61)

2
c c 2
Slo=———= =7 2.
12="5 J(ij (2.39)




® Substituting Eq. (2.60) into Eqg. (2.21) and
simplifying leads to

v(t) = {Asinh &t + B cosh c?)t}e_fa’t

(2.62)

v(t) = GeSt

(2.21)

® The real constants A and B can be evaluated
using the initial conditions v(0) and v(0) as

A %0(0) +Vo(0)é

B =vg(0)

Q

(2.63)




®Substituting Eg. (2.63) into Eq.(2.62) leads to

v(t) = {‘70 O+ V0O i 7t + vy (0) cosh a~)t}e—5a’t
@

(2.64)

v(t) = {Asinh @t + Bcosh @t e =™ (2.62)
A VO (0) + vy (0)Sw
& (2.63)

B =v(0)




® From the form of Eq. (2.64), the response of an
over-damped system iIs similar to the motion of a
critically-damped system as shown in Fig. 2.9.

v(t) = {

v(1)

T

v(0)

1

Vo (0) + YO (O)gwsinh at + Vg (0)cosh &‘)t}e_éa’t
a
(2.64)
v(t) = v(0)1- at) +v(O)tle ™™  (2.43)
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FIGURE 2-9

Free-vibration response with critical damping.



Numerical example

® Free-vibration decay using Eq. (2.64) as well as
Eq. (2.43) was computed for a simple bridge shown
in Fig. E2.1. The following parameters were
assumed here based on Example E2.1,

T =14s
v(0) =0.2inch = 0.508cm
V(O) — O /Weight W = mg |—uv
7777777 —— p = jacking force
£=1.01.52.010.0
k : k
® Fig. E2.2 shows free :
decays of critically damped
System (ECI . (2 . 43)) and R O B
over-damped system (Eq. Fig. E2.1 Vibration test of a
simple bridge

(2.64)).



v(t) = V(0)1-at) +v(O)tle™™  (2.43)

u(t) = {vo (0) +Vo (0w~ vo (0) cosh @t}e—fwt

)]
| (2.64)
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Fig. E2.2 Comparison of critically damped and over-damped system
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