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2.6 DAMPED FREE VIBRATIONS

If damping is present in the system, the solution 
of Eq. (2.25) is

022 =++ ωs
m
cs (2.25)

Three types of motion are represented by this 
expression, according to whether the quantity 
under the square-root sign is positive, negative or 
zero.
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Critically-Damped Systems （臨界減衰システム）

If the radical term in Eq. (2.39) is set equal to 
zero, it is evident that               ; thus, the critical 
value of the damping coefficient (臨界減衰係数), cc, 
is

ω=mc 2/

mkmcc 22 == ω (2.40)
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Then, 
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The solution of Eq. (2.20) in this special case 
must now be of the form

tetGGtv ω−+= )()( 21 (2.42)

Because                 is a real function, the constants 
G1 and G2 must also be real.

)exp( tω−

Using the initial conditions       and        , these 
constants can be evaluated leading to

)0(v )0(v&

{ } tetvtvtv ωω −+−= )0()1)(0()( & (2.43)

Fig. 2.9 shows the response for positive values 
of         and        .)0(v )0(v&

0)()()( =++ tkvtvctvm &&& (2.20)



Note that this free response of a critically-damped 
system （臨界減衰システム） does not include oscillation 
about the zero-deflection position; instead it simply 
returns to zero asymptotically in accordance with the 
exponential term of Eq. (2.43).

However a single zero-displacement crossing would 
occur if the signs of the initial velocity and 
displacement were different from each other.
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A very useful definition of the critically-damped 
condition is that it represents the smallest amount of 
damping for which no oscillation occurs in the free-
vibration response.
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Undercritically-Damped Systems

If damping is less than critical, that is, if c<cc
(i.e.,             , it is apparent that the quantity under 
the radical sign in Eq. (2.39) is negative.
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To evaluate the free-vibration response in this case, 
it is convenient to express damping in terms of a 
damping ratio     (減衰定数) which is the ratio of the 
given damping to the critical value;
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Introducing Eq. (2.44) into Eq. (2.39) leads to

Dis ωξω ±−=2,1 (2.45)

where 
21 ξωω −≡D (2.46)

is the free-vibration frequency of the damped 
system (damped angular natural frequency, 減
衰角固有振動数）.
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Damping ratio of structures

Standard bridges 07.005.0 −=ξ

Long span bridges 05.001.0 −=ξ

Suspension bridges and cable stayed bridges

02.0005.0 −=ξ

Sloshing of liquid 01.0001.0 −=ξ



21 ξωω −≡D (2.46)

Note that for low damping values which are 
typical of most practical structures,             , 
the frequency ratio           as given by Eq. 
(2.46) is nearly unity. The relation between 
damping ratio and frequency is represented in 
Fig. 2.10.                                                      

%20<ξ
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Using Eq. (2.21) and two values of s given by Eq. 
(2.45), the free-vibration response becomes

stGetv =)( (2.21)

Dis ωξω ±−=2,1 (2.45)

{ } ttDitDi eeGeGtv ξωωω −−+= 21)( (2.47)

in which the constants G1 and G2 must be complex 
conjugate pairs for the response v(t) to be real, i.e., 

IR iGGG +=1

IR iGGG −=2



The same procedure used in arriving Eq. (2.31) 
results in the equivalent trigonometric form

tBtAtv ωω sincos)( += (2.31)

{ } t
DD etBtAtv ξωωω −+= sincos)( (2.48)

where A=2GR and B=-2GI.  

Using the initial conditions v(0) and        , 
constants A and B can be evaluated leading to 
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Eq. (2.49) can be written as

where,
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A plot of the response of an undercritically-
damped system subjected to an initial displacement 
v(0) but starting with zero velocity is shown in Fig. 
2.11.

The undedamped system oscillates about the 
neutral position, with a constant circular frequency      

.Dω



Evaluation of damping ratio of structures 
based on free-oscillation

Consider any two successive positive peaks such 
as vn and vn+1 which occur at time            
and                       , respectively. 
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Using Eq. (2.50), the ratio of these two successive 
values is given by

t
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Defining the natural logarithm of Eq. (2.53), one 
obtains 
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δ is generally called logarithmic decrement of 
damping (対数減衰率)



For low values of damping ratio, Eq. (2.54) can 
be approximated by

πξδ 2≈ (2.55)

In Eq. (2.54),
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Sufficient accuracy is obtained by retaining only 
the first two terms in the Taylor’s series 
expression, in which case
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For lightly damped systems, greater accuracy in 
evaluating the damping ratio can be obtained by 
considering response peaks which are several 
cycles apart, say m cycles; then
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Eq. (2.58) can be simplified for low damping to an 
approximation relation equivalent to Eq. (2.57):
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Why Does Eq. (2.59) provide more accurate 
estimation than Eq. (2.57)?

Measured free oscillation decay (自由減衰振動) is 
not necessarily smooth, but includes noise as 
shown in the following figure. 



Example 2.1

A bridge is idealized as a rigid girder supported 
by weightless columns as shown in Fig. E2.1.

In order to evaluate the dynamic properties of 
this structure, a free-vibration test is made, in 
which the girder is displaced laterally by a 
hydraulic jack and then suddenly released. 

Fig. E2.1 Vibration test of a simple bridge



During the jacking operation, it is observed that a 
force of 20 kips (9072kg) is required to displace the 
girder 0.2 in (0.508cm). After the instantaneous 
release of this initial displacement, the maximum 
displacement on the first return swing is only 0.16 in 
(0.406cm) and the period of this displacement cycle 
is T=1.40 sec. 

From these data, the following dynamic properties 
are determined:

Effective weight of the girder:
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Undamped frequency of vibration:

Hz
T
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Amplitude after six cycles:
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Overcritically damped systems
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cξBecause               , solutions of Eq. (2.39) are 
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in which
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Substituting Eq. (2.60) into Eq. (2.21) and 
simplifying leads to

stGetv =)( (2.21)

{ } tetBtAtv ξωωω −+= ~cosh~sinh)( (2.62)

The real constants A and B can be evaluated 
using the initial conditions        and         as)0(v )0(v&
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Substituting Eq. (2.63) into Eq.(2.62) leads to
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{ } tetvtvtv ωω −+−= )0()1)(0()( & (2.43)

From the form of Eq. (2.64), the response of an 
over-damped system is similar to the motion of a 
critically-damped system as shown in Fig. 2.9. 
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Numerical example

Free-vibration decay using Eq. (2.64) as well as 
Eq. (2.43) was computed for a  simple bridge shown 
in Fig. E2.1. The following parameters were 
assumed here based on Example E2.1, 

Fig. E2.1 Vibration test of a 
simple bridge

sT 4.1=
cminchv 508.02.0)0( ==

0)0( =v&

0.10,0.2,5.1,0.1=ξ

Fig. E2.2 shows free 
decays of critically damped 
system (Eq. (2.43)) and 
over-damped system (Eq. 
(2.64)).
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Fig. E2.2 Comparison of critically damped and over-damped system

After Hirai, Y., TiTech


