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INTRODUCTION

Structural dynamics is basis for the analysis of 
structures under non-static loads, that is, dynamic 
loads.

The structural dynamics is applied for analysis of 
structures subjected to earthquake loads, wind loads, 
vibration control, blasting loads.

In particular, because earthquake loads control 
construction of structures in earthquake prone 
countries including Japan, structural dynamics is 
essential for mitigating damage of structures and loss 
of lives.

In this lecture, basics of structural dynamics is 
introduced with emphasis on application to seismic 
design of structures.
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SCHEDULE

1st: April 12 (Tue)

2nd: April 19 (Tue)

3rd: April 26 (Tue)

4th: May 3 (Tue)

5th: May 10 (Tue)

6th: May 17 (Tue)

7th: May 24 (Tue)
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8th: May 28 (Sat)

9th: May 31 (Tue) , Mid-term evaluation

10th: June 7 (Tue)

11th: June 14(Tue)

12th: July 18 (Sat)

13th: July 21(Tue)

14th: June 28(Tue)

15th: July 5 (Tue)

Final Exam: To be scheduled on July 12(Tue) 

All classes are provided at 13:20-15:50.
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TEXT

Dynamics of Structures
by 
Ray W. clough
and Joseph Penzien
University of California, 
Berkeley
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Revised version

Computers and Structures, Inc.
http://www.csiberkeley.com
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CHAPTER 1  OVERVIEW OF 
STRUCTURAL DYNAMICS

1.1 FUNDAMENTAL OBJECTIVE OF 
STRUCTURAL DYNAMICS ANALYSIS

Earthquake loading

Wind loading

Bombing

Vibration and noise pollution

….
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1.5 DIRECT EQUILIBRIUM USING 
d’ALEMBERT’s PRINCIPLE（ダランベールの
法則）

The equations of motion of any dynamic system 
can be represented by Newton’s second law of 
motion, which states that the rate of change of 
momentum of any mass particle m is equal to the 
force acting on it. 

The Newton’s second law of motion is expressed 
mathematically by the differential equation as

⎟
⎠
⎞

⎜
⎝
⎛=

dt
dm

dt
dt vp )( (1-3)

where, p(t) is the applied force vector and v(t) is 
the position vector of particular mass m. 
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For most problems in structural dynamics, it may 
be assumed that mass does not vary with time, in 
which case Eq. (1.3) may be written

)()( 2

2
tm

dt
dmt vvp &&== (1.3a)

where the dots represent differentiation with 
respect to time. 

Eq. (1.3a), indicating that force is equal to the 
product of mass and acceleration, may be written 
in the form

0)()( =− tmt vp && (1.3b)

in which, the second term         is called the inertial 
force (慣性力) resisting the acceleration of the mass.

)(tmv&&
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The concept that a mass develops an inertia force 
proportional to its acceleration and opposing is 
known as d’Alembert’s principle (ダランベールの法則).

The d’Alembert’s principle is a very convenient 
concept in problems of structural dynamics because 
it permits the equations of motion to be expressed 
as equations of dynamic equilibrium.  

The force p(t) may be considered to include many 
types of force acting on the mass such as

Elastic constraints which oppose displacements

Viscous forces which resist velocities

Independently defined external loads
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Thus if an inertia force which resists 
acceleration is introduced, the equation of motion 
is merely an expression of equilibration of all 
forces acting on the mass.

In many simple problems, the most direct and 
convenient way of formulating the equations of 
motion is by means of such direct equilibrium.
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CHAPTER 2 ANALYSIS OF FREE 
VIBRATIONS(自由振動)
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2.1 COMPONENTS OF THE BASIC 
DYNAMIC SYSTEM

The essential physical properties of any linearly 
elastic structural system subjected to an external 
source of excitation or dynamic loading are its mass, 
elastic properties, and energy-loss mechanism (エネ
ルギー吸収) or damping (減衰) as shown in Fig. 2.1(a).

Fig. 2.1 Idealized SDOF system

(a) Basic components (b) Forces in equilibrium
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2.2 EQUATION OF MOTION OF THE 
BASIC DYNAMIC SYSTEM

The equation of motion for the simple system of Fig. 
2.1 (a) is most easily formulated by directly 
expressing the equilibrium of all forces acting on the 
mass using d’Alembert’s principle. 

The forces acting in the direction of the 
displacement degree of freedom are applied load p(t) 
and the three resisting forces resulted from the 
motion, i.e., the inertia force fI(t) (慣性力), the 
damping force fD(t) (減衰力), and the restoring 
(spring) force fS(t) (復元力).

The equation of motion is merely an expression of 
the equilibrium of these forces as given by   

)()()()( tptftftf SDI =++ (2.1)
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Fig. 2.1 Idealized SDOF system

(a) Basic components (b) Forces in equilibrium

In accordance with d’Alembert’s principle, the 
inertia force is the product of the mass and 
acceleration

Assuming a viscous damping mechanism, the 
damping force (減衰力) is the product of the damping 
constant c (減衰係数) and the velocity

)()( tvmtf I &&= (2.2a)

)()( tvctfD &= (2.2b)
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Fig. 2.1 Idealized SDOF system

(a) Basic components (b) Forces in equilibrium

Finally, the elastic restoring force (復元力) is the 
product of the spring stiffness (ばね定数、ばね剛
性)and the displacement

)()( tkvtfS = (2.2c)

When Eqs. (2.2) are introduced into Eq. (2.1), 
the equation of motion for this single-degree-of-
freedom system (SDOF, 1自由度系) is found to be

)()()()( tptkvtvctvm =++ &&& (2.3))()()()( tptkvtvctvm =++ &&& (2.3)
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2.3 INFLUENCE OF GRAVITATIONAL 
FORCES (重力)

Fig. 2.2 (a)

Consider the system shown 
in Fig. 2.2(a), which is the 
system of Fig. 2.1(a) rotated 
through 90 degree so that 
the forces of gravity acts in 
the direction of the 
displacement. 

The system of forces acting 
in the direction of the 
displacement degree of 
freedom is that set shown in 
Fig. 2.2(b). 

Fig. 2.2(b)
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(b)

Fig. 2.2 (b)

(c)

Fig. 2.2 (c)

Using Eqs. (2.2), the equilibrium of these forces is 
given by

Wtptkvtvctvm +=++ )()()()( &&& (2.6)

where W is the weight of the rigid block. 

However, if the total displacement v(t) is expressed  
the sum of the 
static displacement    

caused by the 
weight W plus the 
additional dynamic 
displacement (動的
変位)        as shown 
in Fig. 2.2(c), i.e.,

st∆

)(tv

)()( tvtv st+∆= (2.7)
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(c)

Fig. 2.2 (c)

The spring restoring force is given by

)()( tkvtfS = )(tvkk st +∆= (2.8)

Introducing Eq. (2.8) into Eq. (2.6) yields

Wtptvkktvctvm st +=+∆++ )()()()( &&& (2.9)

Noting that                leads toWk st =∆

)()()()( tptvktvctvm =++ &&&

(2.10)

Because       does not vary 
in time

st∆

))(()( tv
dt
dtv st +∆=& )(tv&=

)()( tvtv &&&& =
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(c)

Fig. 2.2 (c)

So Eq. (2.10) can be written as Eq. (2.11)

)()()()( tptvktvctvm =++ &&& (2.10)
)()()()( tptvktvctvm =++ &&& (2.11)

Comparison of Eqs. (2.11) and 
(2.3) shows that the equation of 
motion expressed with reference 
to the static equilibrium position 
of the dynamic system is not 
affected by gravity force. 

For this reason, displacements 
in all future discussion will be 
referenced from the static 
equilibrium position and will be 
denoted v(t) without the overbar.

)()()()( tptkvtvctvm =++ &&& (2.3)
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2.4 INFLUENCE OF SUPPORT EXCITATION

Fig. 2.3 Influence of 
support excitation on 
SDOF equilibrium

Dynamic stresses and 
deflection can be induced in a 
structure not only by a time-
varying applied load, but also 
by motions of its support points.

A simplified model of the 
earthquake-excitation problem 
is shown in Fig. 2.3, in which 
the horizontal ground motion 
caused by the earthquake is 
indicated by the displacement 
vg(t) of the structure’s base 
relative to the fixed reference 
axis.
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Fig. 2.3 Influence of 
support excitation on 
SDOF equilibrium

The horizontal girder in this 
frame is assumed to be rigid 
and to include all the moving 
mass of the structure. 

The vertical columns are 
assumed to be weightless and 
inextensible in the vertical 
(axial) direction, and the 
resistance to girder 
displacement provided by each 
column is represented by its 
spring constant k/2. 

The mass thus has a single 
degree of freedom, v(t), which 
is associated with column 
flexure.  
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Fig. 2.3 Influence of 
support excitation on 
SDOF equilibrium

The damper c provides a 
velocity-proportional 
resistance (速度比例型抵抗) to 
the motion in this coordinate.



24Fig. 2.3 Influence of support 
excitation on SDOF equilibrium

As shown in Fig. 2.3(b), 
the equilibrium of forces for 
this system can be written 
as

where,

)()( tvctfD &=
)()( tkvtfS =

Note that vt(t) represents 
the total displacement of the 
mass from the fixed 
reference axis as

0)()()( =++ tftftf SDI (2.12)

)()( tvmtf t
I &&= (2.13)

)()()( tvtvtv g
t += (2.15)
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Relative displacement, Absolute displacement, and 
Ground displacement

)(tvg : ground displacement (地震
動変位）

)(tvg& : ground velocity（地震動速度）

)(tvg&& : ground acceleration（地震動
加速度）

)(tv : structural displacement 
relative to the support (relative 
displacement of the structure)
（構造物の相対変位）

)(tv& : relative velocity of the structure （構造物の相対
速度）

)(tv&& : relative acceleration of the structure （構造物の
相対加速度）
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)(tvt : total (absolute) displacement 
of the structure (構造物の絶対変
位)

)(tvt& : total (absolute) velocity of 
the structure （構造物の絶対
速度）

)(tvt&& : total (absolute) acceleration of 
the structure （構造物の絶対加速度）



27Fig. 2.3 Influence of support 
excitation on SDOF equilibrium

Note that fI(t) and fS(t) 
are expressed as in Eq. 
(2.2), however fI(t) is not

)()( tvmtf I &&=

Substituting for the inertial, 
damping and elastic forces 
in Eq. (2.12) yields

0)()()( =++ tkvtvctvm t &&& (2.14)

Substituting Eq. (2.15) 
into Eq. (2.14) yields

0)()()()( =+++ tkvtvctvmtvm g &&&&&

(2.16)
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Since the ground acceleration represents the 
specified dynamic input (構造物に対する動的入力) to 
the structure, the equation of motion can more 
conveniently be written 

)()()()( tvmtkvtvctvm g&&&&& −=++ )(tpeff≡ (2.17)

where, peff(t) denotes the effective support 
excitation loading (有効支点載荷荷重).

The structural deformation caused by ground 
acceleration          are exactly the same as those 
which would be produced by an external load p(t) 
equal to             .

)(tvg&&

)(tvm g&&−
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An alternative form of the equation of motion can 
be obtained by using Eq. (2.15) and expressing Eq. 
(2.14) in terms of vt(t) and its derivatives, rather 
than in terms of v(t) and its derivatives, giving

)()()()()( tkvtvctkvtvctvm gg
ttt +=++ &&&& (2.18)

In Eq. (2.18), the effective loading shown on the 
right hand side depends on the ground velocity and 
ground displacement, and the response obtained by 
solving Eq. (2.18) is the total (absolute) 
displacement of the structure from a fixed reference 
rather than the relative displacement 

)()()( tvtvtv g
t += (2.15)

0)()()( =++ tkvtvctvm t &&& (2.14)
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Solutions are seldom obtained in this manner, 
however, because the ground motion generally is 
measured in terms of accelerations and the seismic 
record would have to be integrated once and twice 
to evaluate the effective loading contributions due 
to the ground velocity and ground displacement. 
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2.5 ANALYSIS OF UNDAMPED FREE VIBRATIONS

It has been shown in the preceding sections that 
the equation of motion of a single spring-mass 
system with damping (減衰のある1自由度マスーばね系シ
ステム) can be expressed as

)()()()( tptkvtvctvm =++ &&& (2.19)

in which v(t) represents the dynamic response (動的
応答変位) , that is, the displacement from the static-
equilibrium position (静的つり合い状態からの変位), and 
p(t) represents the effective load (有効荷重) acting on 
the system, either applied directly or resulting from 
support motions（構造物に直接作用するか、支点変位（地震
動）の結果、作用するか）.
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The solution of Eq. (2.19) will be obtained by 
considering first the homogeneous form with the 
right side set equal to zero, i.e.,

0)()()( =++ tkvtvctvm &&& (2.20)

Motions taking place with no applied force are 
called free vibration (自由振動). 

The free-vibration response may be expressed in 
the following form:

stGetv =)( (2.21)

G is an arbitrary complex constant.
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Consider first the complex constant G, this may be 
represented as a vector plotted in the complex 
plane as shown in Fig. 2.4. This sketch 
demonstrates that the vector may be expressed in 
terms of its real and imaginary Cartesian 
components: 

IR iGGG += (2.22a)
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or, alternatively, that it may be expressed in polar 
coordinates using its absolute value       (the length of 
the vector) and its angle    , measured 
counterclockwise from the real axis:

G
θ

In addition, from the trigonometric relations shown 
in the sketch, it is clear that Eq. (2.22a) also may 
be written

θieGG = (2.22b)

θθ sincos GiGG +=

(2.22c)
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θθ sincos GiGG +=

)
2

sin(cos πθθ += )
2

cos(sin πθθ +−=

It is easy to show that multiplying a vector by i
has the effect of rotating it counterclockwise in the 
complex plane through an angle of 2/π

Similarly it may be seen that multiplying by –i 
rotates 90 degree clockwise.
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θieGG = (2.22b)

θθ sincos GiGG += (2.22c)

Eqs. (2.22b) and (2.22c) lead to Euler’s pair of 
equations that serve to transform from trigonometric 
to exponential function.

θθθ sincos iei +=

θθθ sincos ie i −=−
(2.23a)

Furthermore, Eqs. (2.23a) may be solved 
simultaneously to obtain the inverse form of Euler’s 
equations:

{ }θθθ ii ee −+=
2
1cos

{ }θθθ ii eei −−−=
2

sin

(2.23b)
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Eq. (2.21) is substituted into Eq. (2.20) to derive 
a free-vibration response, one obtains

stGetv =)( (2.21)

0)()()( =++ tkvtvctvm &&& (2.20)

0)( 2 =++ stGekcsms

and after dividing by mGexp(st) and introducing 
the notation 

Eq. (2.20) becomes
m
k≡2ω (2.24)

022 =++ ωs
m
cs (2.25)
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1) Undamped System

Consider first the undamped system for which 
c=0, it is evident that the two values of s in Eq. 
(2.25) are 

ωis ±=2,1 (2.26)

Thus the total response includes two terms of 
the form of Eq. (2.21) as follows:

titi eGeGtv ωω −+= 21)( (2.27)

The complex constants G1 and G2 represent the 
arbitrary amplitudes of the corresponding vibration 
terms.
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By representing 

IR iGGG 111 += IR iGGG 222 +=

and substituting Eq. (2.23a) into Eq. (2.27), Eq. 
(2.27) becomes 

)sin)(cos()( 11 titiGGtv IR ωω ++=
)sin)(cos( 22 titiGG IR ωω −++

After simplifying 

tGGtGGtv IIRR ωω sin)(cos)()( 2121 −−+=

[ ]tGGtGGi RRII ωω sin)(cos)( 2121 −+++ (2.28)

However the free-vibration response must be 
real, so the imaginary term must be zero for all 
values of t, and this condition requires that

IIi GGG ≡−= 21 RRR GGG ≡= 21
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From this it is seen that G1 and G2 are a complex 
conjugate pair(共役複素数):

IR iGGG +=1 IR iGGG −=2

With these, Eq. (2.27) becomes finally

ti
IR

ti
IR eiGGeiGGtv ωω −−++= )()()( (2.29)

titi eGeGtv ωω −+= 21)( (2.27)
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An alternative for this real motion expression may 
be derived by applying the Euler transformation Eq. 
(2.23a) to Eq. (2.29) as 

ti
IR

ti
IR eiGGeiGGtv ωω −−++= )()()( (2.29)

θθθ sincos iei +=

θθθ sincos ie i −=−
(2.23a)

in which A=2GR and B=-2GI. 

tBtAtv ωω sincos)( += (2.31)
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The values of two constants A and B may be 
determined from the initial condition (初期条件), that 
is, the displacement v(0) and velocity         at time 0 
when the free vibration was set in motion. 

Substituting the initial conditions  

)0(v&

Thus, Eq. (2.31) becomes

RGAv 2)0( == IGBv 2)0( −==
ω
& (2.32)

tvtvtv ω
ω

ω sin)0(cos)0()( &+= (2.33)

tBtAtv ωω sincos)( += (2.31)
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This solution represents a simple harmonic motion 
as shown in Fig. 2.7. The quantity    , which we have 
identified previously as the angular velocity  (角速度
measured in radian per unit of time) of the vectors 
rotating in the complex plane, is known as the circular 
frequency (角振動数).     

ω

tvtvtv ω
ω

ω sin)0(cos)0()( &+= (2.33)
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The cyclic frequency, usually referred to as natural 
frequency (固有振動数) is given as.

Its reciprocal is the time required to complete one 
cycle and is called the natural period (固有周期)

π
ω
2

=f (2.34a)

T
f

==
ω
π21

(2.34b)

Frequency f is measured in cycles per second, 
commonly referred to as Hertz (Hz).

The period T is measured in seconds.


