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INTRODUCTION

@ Structural dynamics is basis for the analysis of
structures under non-static loads, that is, dynamic
loads.

®The structural dynamics is applied for analysis of
structures subjected to earthquake loads, wind loads,
vibration control, blasting loads.

®In particular, because earthquake loads control
construction of structures in earthquake prone
countries including Japan, structural dynamics is
essential for mitigating damage of structures and loss
of lives.

®In this lecture, basics of structural dynamics is
Introduced with emphasis on application to selsmlc
design of structures.
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®3th: May 28 (Sat)

®9th: May 31 (Tue) , Mid-term evaluation
@10th: June 7 (Tue)

®@11th: June 14(Tue)

®12th: July 18 (Sat)

®13th: July 21(Tue)

®14th: June 28(Tue)

®15": July 5 (Tue)

®Final Exam: To be scheduled on July 12(Tue)

4

All classes are provided at 13:20-15:50.
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CHAPTER 1 OVERVIEW OF
STRUCTURAL DYNAMICS

1.1 FUNDAMENTAL OBJECTIVE OF
STRUCTURAL DYNAMICS ANALYSIS

®Earthquake loading
®\\Vind loading
®@Bombing

®Vibration and noise pollution



1.5 DIRECT EQUILIBRIUM USING
d’ALEMBERT's PRINCIPLE

®The equations of motion of any dynamic system
can be represented by Newton’s second law of
motion, which states that the rate of change of
momentum of any mass particle m is equal to the
force acting on it.

®The Newton’s second law of motion is expressed
mathematically by the differential equation as

d dv
——— — 1-3
p(t) dt(m dt) (1-3)

where, p(t) is the applied force vector and v(t) is

the position vector of particular mass m. .



® For most problems in structural dynamics, it may
be assumed that mass does not vary with time, In
which case Eq. (1.3) may be written
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p(t) = m(:ljt;/ = mv(t) (1.33)

where the dots represent differentiation with
respect to time.

®Eg. (1.3a), indicating that force is equal to the

product of mass and acceleration, may be written
In the form

p(t)—mv(t) =0 (1.3b)

in which, the second term mv(t) is called the inertial
force ( ) resisting the acceleration of the mass.



®The concept that a mass develops an inertia force
proportional to its acceleration and opposing is
known as d’Alembert’s principle ( ).

®The d’Alembert’s principle is a very convenient
concept in problems of structural dynamics because
It permits the equations of motion to be expressed
as equations of dynamic equilibrium.

®The force p(t) may be considered to include many
types of force acting on the mass such as

v Elastic constraints which oppose displacements
v'Viscous forces which resist velocities

v Independently defined external loads
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®Thus If an inertia force which resists
acceleration is introduced, the equation of motion
IS merely an expression of equilibration of all
forces acting on the mass.

®In many simple problems, the most direct and
convenient way of formulating the equations of
motion is by means of such direct equilibrium.
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CHAPTER 2 ANALYSIS OF FREE
VIBRATIONS( )

12



2.1 COMPONENTS OF THE BASIC
DYNAMIC SYSTEM

®The essential physical properties of any linearly
elastic structural system subjected to an external
source of excitation or dynamic loading are its mass,

elastic properties, and energy-loss mechanism (
) or damping ( ) as shown in Fig. 2.1(a).

—v() — u(r)

- p(1) o) /L S p(t)

(a) Basic components (b) Forces in equilibrium
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Fig. 2.1 Idealized SDOF system



2.2 EQUATION OF MOTION OF THE
BASIC DYNAMIC SYSTEM

®The equation of motion for the simple system of Fig.
2.1 (a) i1s most easily formulated by directly
expressing the equilibrium of all forces acting on the
mass using d’Alembert’s principle.

®The forces acting in the direction of the
displacement degree of freedom are applied load p(t)
and the three resisting forces resulted from the

motion, i.e., the inertia force f,(t) ( ), the
damping force f(t) ( ), and the restoring
(spring) force f5(t) ( )E

® The equation of motion is merely an expression of
the equilibrium of these forces as given by

fi (1) + fp(t) + fs(t) = p(t) (2.1) =



®In accordance with d’Alembert’s principle, the
Inertia force Is the product of the mass and
acceleration

fi (1) = my(t) (2.23)
® Assuming a viscous damping mechanism, the
damping force ( ) is the product of the damping
constant c ( ) and the velocity

fo (t) = cv(t) (2.2b)

—v() — u(r)
- p(f) 0 DR/ O SOy
fs(t) +—

(a) Basic components (b) Forces in equilibrium
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Fig. 2.1 Idealized SDOF system



®Finally, the elastic restoring force ( ) is the
product of the spring stiffness (
)and the displacement

fs (1) = kv(t) (2.20)

®\When Egs. (2.2) are introduced into Eq. (2.1),
the equation of motion for this single-degree-of-

freedom system (SDOF, 1 ) is found to be
mv(t) + cv(t) + kv(t) = p(t) (2.3)
—v() — u(r)

- p(1) o) QN . p(t)

(a) Basic components (b) Forces in equilibrium
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Fig. 2.1 Idealized SDOF system



2.3 INFLUENCE OF GRAVITATIONAL
FORCES ()

®Consider the system shown
In Fig. 2.2(a), which is the
system of Fig. 2.1(a) rotated

fo() fp(®)

||

through 90 degree so that

the forces of gravity acts in L ro
the direction of the lw
displacement. ] 7
®The system of forces acting v boovo

in the direction of the P(o) p(0)

displacement degree of
freedom is that set shown In
Fig. 2.2(b).

Fig. 2.2 (@) Fig. 2.2(b)
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®Using Egs. (2.2), the equilibrium of these forces is
given by

mv(t) +cv(t) + kv(t) = p(t) +W (2.6)
where W is the weight of the rigid block.

®However, if the total displacement v(t) is expressed
the sum of the

static displacement fs(0 f(® f(6)
At caused by the I 1 +__ |
weight W plus the L
additional dynamic Lo bt 1)
displacement ( L LT _—
) V(t) as shown _l Wi 18.= displacement
In Fig. 2.2(c), i.e., \ v(r) i 50
p(®) p(1)
v(t) =Aq+V(t) (2.7) (b) (c)

18

Fig. 2.2 (b)  Fig. 2.2 (¢)



®The spring restoring force is given by
fg(t) =kv(t)=kAg +kv(t) (2.8)
®Introducing Eq. (2.8) into Eqg. (2.6) yields
mU(t) + cv(t) + KAg +kv(t) = p(t) +W  (2.9)
®Noting that kA =W leads to

my(t) +cv(t) + kv (t) = p(t) fS(? e
(210) {4,
®Because Agt does not vary - |
In time Wi 384= g;zlt;lzcemcnt
. d .
V(1) = o (Ast +V (D)) = (1) | g0
p(1) ©)

v(t) =V (t) Fig. 2.2 (c) =



@50 Eq. (2.10) can be written as Eqg. (2.11)

mv(t) +cv(t) + kv(t) = p(t) (2.10)
mv (t) +cv(t) +kv(t) = p(t) (2.11)
mv(t) +cv(t) + kv(t) = p(t) (2.3)

@ Comparison of Egs. (2.11) and
(2.3) shows that the equation of
motion expressed with reference O /)

to the static equilibrium position rf" :

of the dynamic system is not - no

affected by gravity force. "

®For this reason, displacements 5] Ta,- Sisplacement
In all future discussion will be i B
referenced from the static AR
equilibrium position and will be (€)
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denoted v(t) without the overbar. Fig. 2.2 (¢



2.4 INFLUENCE OF SUPPORT EXCITATION

® Dynamic stresses and
deflection can be induced in a
structure not only by a time-
varying applied load, but also
by motions of its support points.

®A simplified model of the
earthquake-excitation problem
Is shown in Fig. 2.3, in which
the horizontal ground motion
caused by the earthguake is
Indicated by the displacement
v4(t) of the structure’s base
relative to the fixed reference
axis.

Fixed reference axis

$—v'()
' v(?)

m

.

k

T
!

Fig. 2.3 Influence of
support excitation on
SDOF equilibrium
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®The horizontal girder in this
frame iIs assumed to be rigid
and to include all the moving
mass of the structure.

®The vertical columns are
assumed to be weightless and
Inextensible in the vertical
(axial) direction, and the
resistance to girder
displacement provided by each
column is represented by its
spring constant k/2.

®The mass thus has a single
degree of freedom, v(t), which
IS associated with column
flexure.

Fixed reference axis

$—v'()
' v(?)

m

.

T
!

k| ko

Fig. 2.3 Influence of
support excitation on
SDOF equilibrium
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®The damper c provides a
velocity-proportional
resistance ( ) to
the motion in this coordinate.

Fixed reference axis

$—v'()

v(?)

m

.

T
!

k

Fig. 2.3 Influence of
support excitation on
SDOF equilibrium
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®As shown in Fig. 2.3(b), o
the equilibrium of forces for
this system can be written

asS
fL )+ fp(t)+ fs(t)=0 (2.12
where,
fi)=mvt(t) (2.13)
fo (t) = cv(t)
fs (1) =kv(t)

®Note that vi(t) represents
the total displacement of the

m

k !

i LA
2
/

Fixed reférefice axis
|

mass from the fixed 0 L0 £
reference axis as = &
Vi) =vg ) +v(t) (215 "

Fig. 2.3 Influence of support
excitation on SDOF equilibrium



Relative displacement, Absolute displacement, and

Ground displacement

$— v

Vg(t) : ground displacement (

Vg(t) : ground velocity

Fixed reference axis

Vg (1) : ground acceleration

v(t): structural displacement .

relative to the support (relative
displacement of the structure)

V(t) : relative velocity of the structure

V(t) : relative acceleration of the structure

v()

m

7277779,

T
|

k
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$— v'(0)

vt(t) - total (absolute) displacement | v(f)
of)the structure ( o

ko k

vi(t) : total (absolute) velocity of
the structure

Fixed reference axis

vt (t) : total (absolute) acceleration of
the structure v,(1)
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')
®Note that f,(t) and f5(t) Y

are expressed as in Eq. . : m N
(2.2), however f,(t) is not g T ]
5 k| k|
fi (t) = my(t) § 2 >/
®Substituting for the inertial, § i
damping and elastic forces .

in Eq. (2.12) yields

my'(t) + cv(t) +kv(t) =0 (2.14) *¥

f(®
/
®Substituting Eq. (2.15) U ——
into Eq. (2.14) yields - . —
s D fs()
mu(t) + Mg (§) +ovt) kv =0 57 PP &
(2.16) (b)

Fig. 2.3 Influence of support
excitation on SDOF equilibrium



®Since the ground acceleration represents the

specified dynamic input ( ) to
the structure, the equation of motion can more

conveniently be written
mY(t) + cv(t) + kv(t) = -mig (1) = pert (1) (2.17)

where, p.«(t) denotes the effective support
excitation loading ( ).

®The structural deformation caused by ground
acceleration Vg (1) are exactly the same as those
which would be produced by an external load p(t)

equal to —mv(t).
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®An alternative form of the equation of motion can
be obtained by using Eqg. (2.15) and expressing EqQ.
(2.14) in terms of vi(t) and its derivatives, rather
than in terms of v(t) and its derivatives, giving

mv* (t) +cv' (t) +kv' (1) = cvg (t) +kvg (1)  (2.18)

V (t) Vg +v(t) (2.15)
M (D) - cv() +kv(t) =0 (2.14)

®In Eq. (2.18), the effective loading shown on the
right hand side depends on the ground velocity and
ground displacement, and the response obtained by

solving Eqg. (2.18) is the total (absolute)
displacement of the structure from a fixed reference

rather than the relative displacement -



@ Solutions are seldom obtained in this manner,
however, because the ground motion generally is
measured in terms of accelerations and the seismic
record would have to be integrated once and twice
to evaluate the effective loading contributions due
to the ground velocity and ground displacement.
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2.5 ANALYSIS OF UNDAMPED FREE VIBRATIONS

@It has been shown in the preceding sections that
the equation of motion of a single spring-mass
system with damping ( 1

) can be expressed as

mv(t) + cv(t) + kv(t) = p(t)  (2.19)

®in which v(t) represents the dynamic response (

) , that is, the displacement from the static-
equilibrium position ( ), and
p(t) represents the effective load ( ) acting on
the system, either applied directly or resulting from
support motions
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® [he solution of Eqg. (2.19) will be obtained by
considering first the homogeneous form with the
right side set equal to zero, I.e.,

mv(t) +cv(t) + kv(t)=0 (2.20)
®Motions taking place with no applied force are

called free vibration ( ).

®The free-vibration response may be expressed in
the following form:

v(t) = Ge®™ (2.21)

®G iIs an arbitrary complex constant.
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®Consider first the complex constant G, this may be
represented as a vector plotted in the complex
plane as shown In Fig. 2.4. This sketch
demonstrates that the vector may be expressed in
terms of its real and imaginary Cartesian
components:

G =GR +1G (2.22a)
G=G+1iG, *
or -
G =Gexp(if) iG, = iGsinf
— - » Re
Gy = Gceosf
FIGURE 2-4

Complex constant representation in complex plane. =



®or, alternatively, that it may be expressed In polar
coordinates using its absolute value G (the length of
the vector) and its angle € , measured
counterclockwise from the real axis:

G=Gel? (2.22Db)

In addition, from the trigonometric relations shown
In the sketch, it is clear that Eq. (2.22a) also may
be written

G=Gcos@+iGsind
(2.22¢) U e

G =Gexp(ib)

iG, = iGsin8

» Re

Gy = Gcosf

FIGURE 2-4
Complex constant representation in complex plane.



G=Gcos@d+iGsind

cosé =sin(@ + Z)
2

Sin@ = —cos(6’+z)
2

@It is easy to show that multiplying a vector by i
has the effect of rotating it counterclockwise in the
complex plane through an angle of 7/2

®Similarly it may be seen that multiplying by —i
rotates 90 degree clockwise.

G=0Gg+iG,
or
G = Gexp(if)

FIGURE 2-4

Complex constant representation in complex plane.

iG, = iGsin8

» Re

Gp= Gcos6



®E(gs. (2.22b) and (2.22c) lead to Euler’s pair of
equations that serve to transform from trigonometric
to exponential function.

e'? = cos@+ising
e~'Y = cos@—isin@

(2.23a)

G=Ge'? (2.22b)
G=Gcos@+iGsing (2.22¢)

®Furthermore, Egs. (2.23a) may be solved
simultaneously to obtain the inverse form of Euler’s
equations:

Cos@ = 1{ei‘g E e_m}
2 (2.23b)

- | [ig o
Sih0=——_¢ "~ —¢€ 36
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®E(q. (2.21) is substituted into Eqg. (2.20) to derive
a free-vibration response, one obtains

(ms® +cs+k)GeSt =0

mv(t) +cv(t) +kv(t) =0 (2.20)
v(t) = Ge®t (2.21)

®and after dividing by mGexp(st) and introducing
the notation

5 k

m
Eq. (2.20) becomes
2, C 2 0 (2.25)

S“+ —S+m° =
m

(2.24)

£
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1) Undamped System

®Consider first the undamped system for which
c=0, It i1s evident that the two values of s in EqQ.
(2.25) are

§12 = +low (2.26)

®Thus the total response includes two terms of
the form of Eqg. (2.21) as follows:

v(t) = Gleia’t + Gze_i“)t (2.27)

®The complex constants G1 and G2 represent the
arbitrary amplitudes of the corresponding vibration

terms.
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®By representing
G]_:GJ_R -I—iGll GZ :GZR +iGZ|

and substituting Eq. (2.23a) into Eq. (2.27), Eq.
(2.27) becomes
V(t) = (G +1Gq| )(COS at + 1SIN at)

+ (GZR + iGz| )(cos aX —1sin at)
After simplifying
V(t) = (G]_R +GZR)COS(1)t— (G:|_| _GZ| )sina)t
+i[(Gyy +Gg|)cosat +(Gir —GoR)sinat] (2.28)

®However the free-vibration response must be
real, so the imaginary term must be zero for all
values of t, and this condition requires that

Gyj =-Gg =G Gir =0G2r =GR 39



®From this it is seen that G; and G, are a complex
conjugate pair( ):

G]_ZGR+iG| GZZGR_iGl
®\With these, Eqg. (2.27) becomes finally

v(t) = (Gg +iG;)e'? + (G —iG))e'?  (2.29)

V(t) = Glei“’t + Gze_i”t (2.27)
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®An alternative for this real motion expression may
be derived by applying the Euler transformation Eq.
(2.23a) to Eqg. (2.29) as

v(t) = Acosat + Bsin ot (2.31)

In which A=2G, and B=-2G,.

e'? — cos@+ising
e 1% — cosf—isin®

(2.23a)

V(t) = (Gg +iG|)e'? + (G —iGy)e ' (2.29)
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®The values of two constants A and B may be
determined from the initial condition ( ), that
is, the displacement v(0) and velocity V(0) at time O
when the free vibration was set in motion.

v(t) = Acosat + Bsin ot (2.31)
® Substituting the initial conditions

v(0)
@

v(0) = A= 2GR =B =-2G; (2.32)

®Thus, Eq. (2.31) becomes

v(t) =v(0)cosat + V(0 )sma)t (2.33)
Q)
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®This solution represents a simple harmonic motion
as shown in Fig. 2.7. The quantity 4, which we have
Identified previously as the angular velocity (
measured in radian per unit of time) of the vectors
rotating in the complex plane, is known as the circular
frequency ( ).

v(t) =v(0) cosa)t+@sina)t (2.33)

FIGURE 2-7

IIndamned free-vibhratinn recnance



®The cyclic frequency, usually referred to as natural
frequency ( ) Is given as.

f _ a
~ o (2.34a)

Frequency f Is measured In cycles per second,
commonly referred to as Hertz (Hz).

®lts reciprocal is the time required to complete one

cycle and is called the natural period ( )
1 2
==L (2.34b)
f o

The period T Is measured In seconds.
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