Assignment 3

1.30

Calculate $\mathrm{F}, \mathrm{V}, \mathrm{A}_{\theta}$ in figure.

$$
\begin{array}{cl}
F=P \sin 60^{\circ}=2800 \sqrt{3} \quad[\mathrm{~N}] & \text { eq } 1 \\
V=P \cos 60^{\circ}=2800[\mathrm{~N}] & \text { eq } 2 \\
A_{\theta}=\frac{75 \times 125}{\sin 60^{\circ}}=6250 \sqrt{3}\left[\mathrm{~mm}^{2}\right] & \text { eq3 } \\
\sigma=F / A_{\theta} & \text { eq } 4 \\
\tau=V / A_{\theta} & \text { eq } 5
\end{array}
$$

Substituting F, V, A_{θ} to eq4 and eq5, answer is obtained as follows.

$$
\begin{array}{ll}
\sigma=\frac{2800 \sqrt{3}}{6250 \sqrt{3}}=0.448[M P a]=448[k P a] & \text { Answer } \\
\tau=\frac{2800}{6250 \sqrt{3}} \cong 0.259[M P a]=259[k P a] & \text { Answer }
\end{array}
$$

1.31

From eq1 and eq4, the following equation is obtained.

$$
P=\frac{\sigma A_{\theta}}{\sin 60^{\circ}}
$$

eq6

Substituting $\sigma=525 \mathrm{kPa}$ to eq6, P is obtained.

$$
P=6.5625 \cong 6.56[\mathrm{kN}]
$$

Answer
Calculate τ by eq2, eq3, eq5 and $\mathrm{P}=6.56 \mathrm{kN}$,

$$
\tau \cong 303[k P a]
$$

