Please solve the following homework

Noboru Hidano

The nation is composed of two regions and whose consumers who are homogeneous and whose utility function is

 $u = x^a l^{1-a} z^b$ (1 > a,b > 0) where x is a composite good, 1 is area and local public

good is z. $N=N_1+N_2$. We assume $0 < z_1 < z_2$. The consumers can move one region to the other freely without cost however they can only commute in the same region. Their wage is w constant across the regions.

First state

Their non wage income is s.

 $s=(r_1H_1+r_2H_2)/N$. Where H_1 and H_2 are the area of each regions. Income constraint is w+s=x+rl, price of x is unity and unit rent of land is r. This state is called "without a project", using o as a symbol, i.e., u^o.

Second state

We make a project which increases a level of environment from z_1 up to z_2 with C (cost taking composite good). The cost is shared by all consumers equally. This state is called "with a project" using w as a symbol, such as u^w.

- 1) Find the values to maximize consumer's utility u^w , x^w and 1^w .
- Please state equilibrium conditions and find prices and other variables r^w and u^w.
- Find the values of expenditure function as follows. E(1,r₂,z₂,u^o),E(1,r₂,z₂,u^w)

Where $E(1,r_2,z_2,u)=\min_{x,l} 1x+r_2l; u(x,l,z_2)=u$