

$$I_2$$
 dominates $O \rightarrow \sigma_0 = 0$

$$\underbrace{\gamma \ge 0}_{\text{(-1 < }\gamma < 0 \rightarrow \text{Ex.9.C.2)}}$$

E's strategy: $(\sigma_0, \sigma_1, \sigma_2)$

I's strategy: $(\sigma_F, 1 - \sigma_F)$

I's belief: $(\mu_1, 1- \mu_1)$

	F	A
О	0, 2	0, 2
I_1	-1, -1	3, -2
I_2	γ, 1	2, 1

$$\underline{\mu_1} > 2/3$$

I plays F ($\sigma_F = 1$) \rightarrow E plays I₂ since $\gamma > 0 > -1$

$$\rightarrow \mu = (0, 1)$$
 C! to $\mu_1 > 2/3$

$$\mu_1 < 2/3$$

I plays A $(\sigma_F = 0)$

 \rightarrow E plays I_1 since 3 > 2 > 0

$$\rightarrow \mu = (1, 0)$$
 C! to $\mu_1 < 2/3$

$$E: \ \sigma_1 = 2/3, \ \sigma_2 = 1/3$$

$$\ \text{since } \sigma_0 = 0, \ \mu_1 = 2/3 \ \text{and} \ 1 - \mu_1 = 1/3$$

$$\ \rightarrow \ E: \ I_1 \ \text{and} \ I_2 \ \text{are indifferent under } (\sigma_F, \ 1 - \sigma_F)$$

$$\ \text{since } \sigma_1, \ \sigma_2 > 0$$

E: I_1 and I_2 are indifferent under $(\sigma_F, 1 - \sigma_F)$ since $\sigma_1, \sigma_2 > 0$.

E's payoff :
$$I_1 \rightarrow -\sigma_F + 3(1-\sigma_F)$$
, $I_2 \rightarrow \gamma\sigma_F + 2(1-\sigma_F)$
 $-\sigma_F + 3(1-\sigma_F) = \gamma\sigma_F + 2(1-\sigma_F) \rightarrow \sigma_F = 1/(\gamma + 2)$

I's strategy: $(1/(\gamma+2), (\gamma+1)/(\gamma+2))$

WPBE

$$((0, 2/3, 1/3), (1/(\gamma+2), (\gamma+1)/(\gamma+2)), \mu = (2/3, 1/3))$$

Sequential Equilibrium (motivation, Ex.9.C.4)

P2 has an <u>arbitrary</u> belief since his information set is <u>not</u> reached in equilibrium. ???

Sequential Equilibrium (motivation, Ex.9.C.5)

((O,A), F, (1,0))

 \rightarrow WPBE

I E	F	A
F	-3, <u>-1</u>	1,-2
A	<u>-2</u> , -1	<u>3, 1</u>

((O,A),F) is not SPNE

Nash eq \rightarrow (A, A)

Sequential Equilibrium (definition)

<u>Def. 9.C.4</u>: (σ, μ) is a <u>sequential equilibrium</u> (SE) if

- (i) σ is sequentially rational given μ ;
- (ii) \exists a sequence of completely mixed strategies $\{\sigma^k\}_{k=1}^{\infty}$ with $\lim_{k\to\infty} \sigma^k = \sigma$ such that $\mu = \lim_{k\to\infty} \mu^k$ where μ^k is the set of beliefs derived from σ^k using Bayes' rule.

Sequential Equilibrium (Ex. 9.C.4)

For any comp. mixed strategy (σ_x, σ_y) , P2's belief = (.5, .5)

P2's choice must be "r" since $5 < 2 \times .5 + 10 \times .5 = 6$

P1's choice must be "y" since 2 < 5

$$SE \rightarrow (y, r, (.5, .5), (.5, .5))$$

Sequential Equilibrium (Ex. 9.C.5)

SE must contain (A, A). $(\rightarrow next slide)$

Sequential Equilibrium (Ex. 9.C.5)

Prob(H |
$$\sigma^k$$
) = $\sigma^k_E(I) = \epsilon$, Prob(x | σ^k) = $\sigma^k_E(I) \times \sigma^k_E(F) = \epsilon \times \epsilon$ '
$$\mu^k(x) = \epsilon' \rightarrow \underline{\mu(x) = 0} \qquad \mu^k(y) = 1 - \epsilon' \rightarrow \underline{\mu(y) = 1}$$

Sequential Equilibrium (Ex. 9.C.5)

Prob(H |
$$\sigma^k$$
) = $\sigma^k_E(I)$ = 1- ϵ , Prob(x | σ^k) = $\sigma^k_E(I) \times \sigma^k_E(F)$ = (1- ϵ) ϵ '
$$\mu^k(x) = \epsilon' \rightarrow \underline{\mu(x)} = \underline{0} \qquad \mu^k(y) = 1 - \epsilon' \rightarrow \underline{\mu(y)} = \underline{1}$$

Sequential Equilibrium and SPNE

<u>Prop. 9.C.2</u>: In every SE (σ, μ) , σ is an SPNE.

Assignments

```
Problem Set 10 (due June 23)

Exercises (pp.301-305)

9.C.2, 9.C.6 (only 9.C.3 part)
```

Reading Assignment:

Text, Chapter 9, pp.292-300