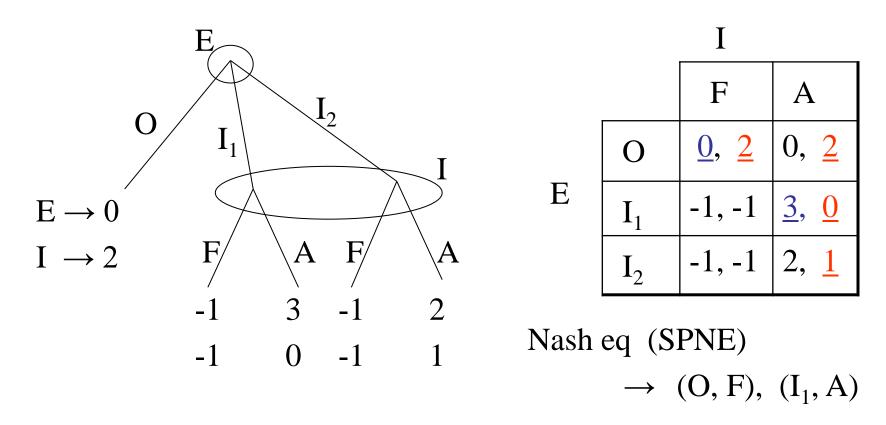
Weak Perfect Bayesian Nash Equilibrium (motivation)



For I: in either decision point, A > F (-1 < 0, -1 < 1)

 \rightarrow I should play "A".

 \rightarrow introduce "belief"

Weak Perfect Bayesian Nash Eq (definition)

<u>Def. 9.C.1</u>: $\mu = (\mu(x))_{x \in X}$ is a <u>system of beliefs</u> (X: set of all nodes) if $\sum_{x \in H} \mu(x) = 1 \quad \forall$ information set H <u>Def. 9.C.2</u>: $\sigma = (\sigma_1, \dots, \sigma_I)$ is <u>sequentially rational at H given μ </u> if $E(u_{i(H)} | H, \mu, \sigma_{i(H)}, \sigma_{-i(H)}) \ge E(u_{i(H)} | H, \mu, \sigma_{i(H)}, \sigma_{-i(H)})$ $\forall \sigma^{(H)} \in \Delta(S_{i(H)})$ (i(H) : the player who moves at H) E ($u_{i(H)} | H, \mu, \sigma_{i(H)}, \sigma_{-i(H)}$) : expected payoff to i(H) from H if he/she is in H according to the prob. given by μ and he/she plays $\sigma_{i(H)}$, and rivals play $\sigma_{-i(H)}$. $\sigma = (\sigma_1, \dots, \sigma_I)$ is sequentially rational given μ if \forall H, $\sigma = (\sigma_1, \dots, \sigma_I)$ is sequential rational at H given μ

Weak Perfect Bayesian Nash Eq (definition)

<u>Def. 9.C.3.</u>: (σ, μ) is a <u>weak perfect Bayesian Eq (WPBE)</u> if (i) σ is sequential rational given μ (ii) μ is derived from σ by Bayes' rule if possible, i.e., \forall H such that Prob(H | σ) > 0 $\mu(x) = Prob(x | \sigma) / Prob(H | \sigma) \forall x \in H$

WPBE and Nash Equilibrium

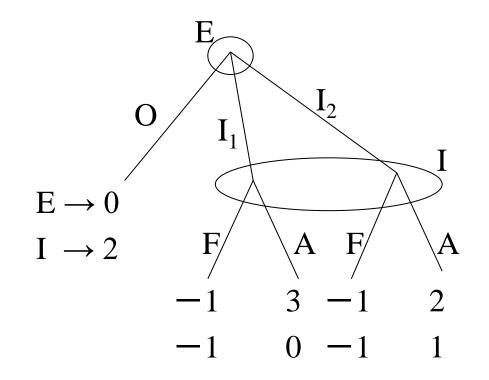
<u>Prop. 9.C.1</u>: σ is a Nash Equilibrium

- $\Leftrightarrow \exists \mu \text{ such that}$
 - (i) σ is sequentially rational given μ

at H with $Prob(H \mid \sigma) > 0$.

(ii) μ is derived from σ by Bayes' rule whenever possible.

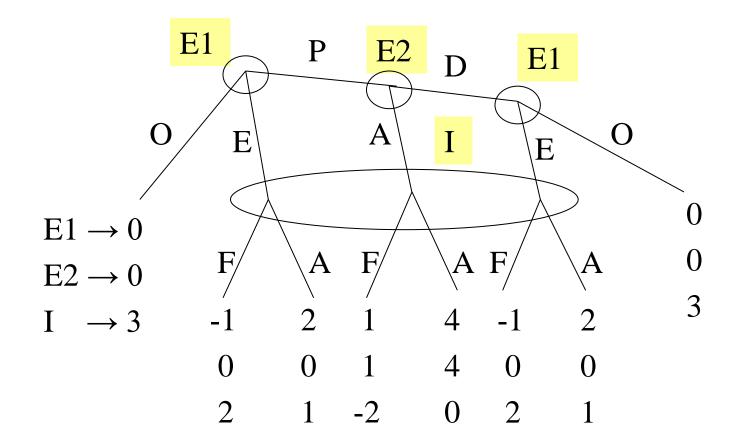
<u>Cor.</u>: (σ, μ) is a WPBE $\rightarrow \sigma$ is a Nash Equilibrium

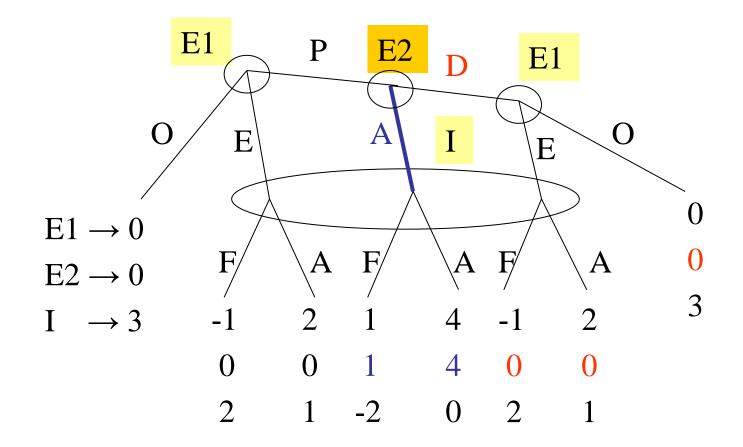


Nash eq (SPNE) \rightarrow (O, F), (I₁, A)

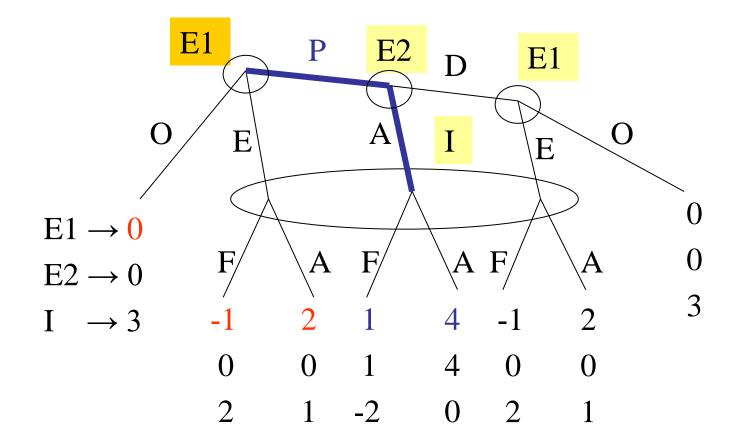
"F" is <u>not</u> sequentially rational for any belief -1 < 0, -1 < 1

WPBE
$$\rightarrow$$
 ((I₁, A), $\mu = (1,0)$)

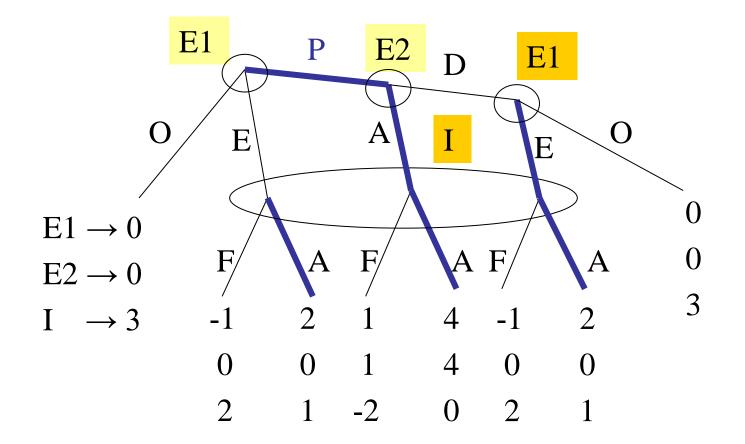




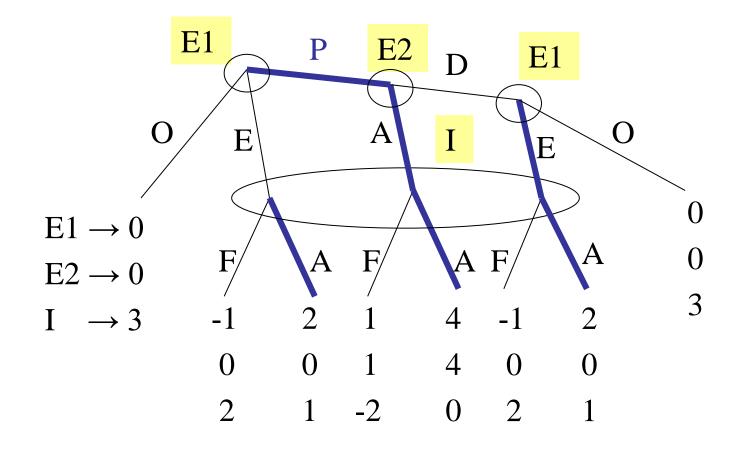
E2 plays "A" since 1, 4 > 0



E1 plays "P" since 4 > 2, $1 > -1 \rightarrow P > E$ $4, 1 > 0 \rightarrow P > O$

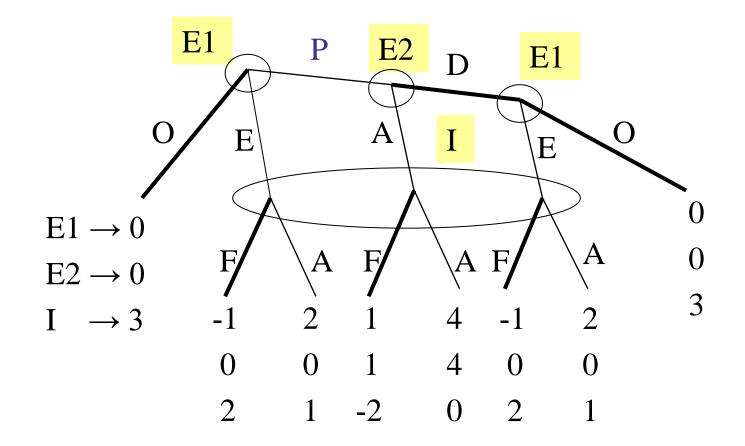


I's belief $(0, 1, 0) \rightarrow I$ plays "A" since 0 > -2Then E1 plays "E" since 2 > 0.



WPBE : ((P, E), (A), (A), (0, 1, 0))

Note: ((O, O), (D), (F)) Nash eq. (SPNE)



((O, O), (D), (F)) Nash eq. (SPNE)

Assignments

Problem Set 9 (due July 16) Exercises (pp.301-305) 9.C.1

Reading Assignment:

Text, Chapter 9, pp.287-291