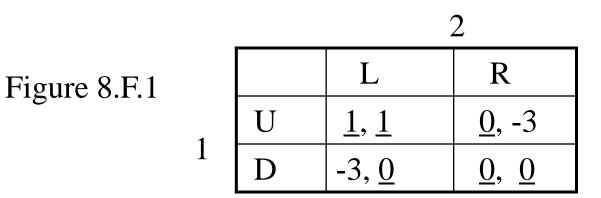
Trembling-Hand Perfect Equilirium



Player 1: U w-dom D, Player 2: L w-dom R \rightarrow (D, R) is a Nash eq. ??? ((U, L) is also a Nash eq.)

Perturbed Game

$$\begin{split} &\Gamma_{\epsilon} = [N = \{0, 1, \dots, I\}, \{\Delta_{\epsilon} S_i\}, \{u_i\}] \text{ is a perturbed game of} \\ &\Gamma_N = [N = \{0, 1, \dots, I\}, \{\Delta S_i\}, \{u_i\}] \text{ if} \\ &\forall i \in N, \ \forall \ s_i \in S_i \quad \exists \ \epsilon_i(s_i) \in (0, 1) \text{ with } \Sigma_{si \ \in Si} \ \epsilon_i(s_i) < 1 \text{ s.t.} \\ &\Delta_{\epsilon}(S_i) = \{\sigma_i \mid \sigma_i(s_i) \ge \epsilon_i(s_i) \ \forall \ s_i \in S_i \text{ and } \Sigma_{si \ \in Si} \ \sigma_i(s_i) = 1\} \end{split}$$

Definition 8.F.1: A Nash eq. σ of $\Gamma_N = [N=\{0,1,...,I\}, \{\Delta S_i\}, \{u_i\}]$ is trembling-hand perfect if \exists a sequence of perturbed games $\{\Gamma_{\epsilon k}\}_{k=1}^{\infty}$ converging to Γ_N (i.e., $\epsilon^k_i(s_i) \rightarrow 0$ for all i and $s_i \in S_i$ for which \exists some sequence of Nash eq. $\{\sigma^k\}_{k=1}^{\infty}$ that converges to σ.

Trembling-Hand Perfect Nash Equilibrium

<u>Proposition 8.F.1</u>: A Nash eq. of $\Gamma_N = [N = \{0, 1, ..., I\}, \{\Delta S_i\}, \{u_i\}]$ is trembling-hand perfect <u>iff</u> \exists a sequence of totally mixed strategies $\{\sigma^k\}_{k=1}^{\infty}$ such that $\lim_{k\to\infty} \sigma^k = \sigma$ and σ_i is a best response to every element of sequence $\{\sigma^k_{-i}\}_{k=1}^{\infty}$ for all i = 1, ..., I.

Totally mixed strategy:

every pure strategy is played with <u>positive</u> probability

<u>Proposition 8.F.2</u>: If $\sigma = (\sigma_1, ..., \sigma_I)$ is a trembling-hand perfect Nash eq., then σ_i is not a weakly dominated strategy for any i = 1, ..., I. Hence, in any trembling-hand perfect Nash eq., no weakly dominated pure strategy can be played with positive probability.

Trembling-Hand Perfect Nash Equilibrium

<u>Proposition 8.F.2</u>: If $\sigma = (\sigma_1, ..., \sigma_I)$ is a trembling-hand perfect Nash eq., then σ_i is not a weakly dominated strategy for any i = 1, ..., I. Hence, in any trembling-hand perfect Nash eq., no weakly dominated pure strategy can be played with positive probability.

σ= (σ₁, ..., σ_I) is a T-HPNE → σ_i is <u>not</u> weakly dominated
Any NE not having a weakly dominated strategy → T-HPNE ?
true for two-person games; not true in general
Existence of T-HPNE:
Every game Γ_{N=} [N={0,1,...,I}, {ΔS_i}, {u_i}] with finite S₁, ..., S_I

has s T-HPNE.

Existence of Nash Equilibrium

<u>Lemma 8.AA.1</u>: If S_1, \ldots, S_I are nonempty, compact and convex, and u_i is continuous in (s_1, \ldots, s_I) and quasi-concave in s_i , then player i's best-response correspondence b_i is nonempty, convexvalued, and upper hemi-continuous.

<u>Pf</u>: $b_i(s_{-i}) = \{s_i \in S_i \mid u_i(s_i, s_{-i}) = \max \{u_i(s'_i, s_{-i}) \mid s'_i \in S_i\}$ <u>Non-emptiness</u>: S_i is compact and u_i is continuous; so $b_i(s_{-i})$ is nonempty.

<u>Convex-valued</u>: Pick any s_i , $t_i \in b_i(s_{-i})$ and any $\alpha \in [0,1]$. Then $u_i(s_i, s_{-i}) = u_i(t_i, s_{-i}) \ge u_i(s'_i, s_{-i}) \quad \forall s'_i \in S_i$. By the quasi-concavity of u_i , $u_i(\alpha s_i + (1 - \alpha)t_i, s_{-i}) \ge \min(u_i(s_i, s_{-i}), u_i(t_i, s_{-i})) \ge u_i(s'_i, s_{-i}) \quad \forall s'_i \in S_i$ <u>Lemma 8.AA.1</u>: If S_1, \ldots, S_I are nonempty, compact and convex, and u_i is continuous in (s_1, \ldots, s_I) and quasi-concave in s_i , then player i's best-response correspondence b_i is nonempty, convexvalued, and upper hemi-continuous.

<u>Pf</u>: $b_i(s_{-i}) = \{s_i \in S_i \mid u_i(s_i, s_{-i}) = \max \{u_i(s'_i, s_{-i}) \mid s'_i \in S_i\}$ <u>uhc</u>: Suffice to show that for any sequence $(s^n_i, s^n_{-i}) \rightarrow (s_i, s_{-i})$ with $s^n_i \in b_i(s^n_{-i}) \forall n = 1, 2, ..., s_i \in b_i(s_{-i}).$ Since $s^n_i \in b_i(s^n_{-i}), u_i(s^n_i, s^n_{-i}) \ge u_i(s'_i, s^n_{-i}) \forall s'_i \in S_i$. Thus by the continuity of u_i , we have $u_i(s_i, s_{-i}) \ge u_i(s'_i, s_{-i}) \forall s'_i \in S_i$. Proposition 8.D.3: A Nash equilibrium of

 $\Gamma_{N} = [N = \{0, 1, \dots, I\}, \{S_{i}\}, \{u_{i}\}] \text{ exists if for all } i = 1, \dots, I,$

(i) S_i is a nonempty, convex, and compact subset of some Euclidean space \Re^M .

(ii) u_i is continuous in (s_1, \dots, s_I) , and quasi-concave in s_i .

<u>Pf</u>: Define b: $S(=S_1 \times ... \times S_I) \rightarrow 2^S$ by $b(s_1,...,s_I) = b_1(s_{-1}) \times ... \times b_I(s_{-I})$. S is nonempty, convex, and compact. From Lemma 8.AA.1, $b(s_1,...,s_I)$ is a nonempty, convex-valued, and uhc correspondence. Hence by the Kakutani fixed point theorem, there exists $s \in S$ such that $s \in b(s)$. Therefore $s_i \in b_i(s_{-i}) \forall i = 1,...,I$ which shows that (s_1, \ldots, s_I) is a Nash eq. <u>Proposition 8.D.2</u>: Every game $\Gamma_N = [N = \{1, ..., I\}, \{\Delta(S_i)\}, \{u_i\}]$ in which $S_1, ..., S_I$ are finite sets has a mixed strategy Nash eq.

<u>Pf</u>: $\Delta(S_i)$ and expected payoff functions satisfy the assumptions of Proposition 8.D.3.

Assignments

Problem Set 6 (due May 26) Exercises (pp.262-266): 8.F.2

Reading Assignment: Text, Chapter 9, pp.267-276