Seismic Design of Urban Infrastructures 都市施設の耐震設計

(5-2) Strength and Ductility Capacity of RC Structural Members (5-2)RC構造物の動的耐力・変形性能

Kazuhiko Kawashima Department of Civil Engineering Tokyo institute of Technology 東京工業大学大学院理工学研究科土木工学専攻 川島一彦

10) 星隈、川島他による定式化 10) Formulation by Hoshikuma and Kawashima et al (1996)

Loading Concrete Cylinders using 30MN Compression Machine at the Public Works Research Institute

Unilateral Loading Tests to Evaluate An Empirical Confinement Model

Hoshikuma, J., Kawashima, K., Nagaya, K. & Taylor, A., 1997 (Proc. ASCE, ST 123, 1997) (**道路橋示方書**、Design Specifications of Highway Bridges, JRA, 1996 & 2002)

$$f_{c} = 0 \quad \text{at } \varepsilon_{c} = 0$$

$$\frac{df_{c}}{d\varepsilon_{c}} = E_{c} \quad \text{at } \varepsilon_{c} = 0$$

$$f_{c} = f_{cc} \quad \text{at } \varepsilon_{c} = \varepsilon_{cc}$$

$$\frac{df_{c}}{d\varepsilon_{c}} = 0 \quad \text{at } \varepsilon_{c} = \varepsilon_{cc}$$

Formulation of Ascending Branch

Kent & Park

 $f_{c} = f_{cc} \left\{ \frac{2\varepsilon_{c}}{\varepsilon_{cc}} - \left(\frac{\varepsilon_{c}}{\varepsilon_{cc}}\right)^{2} \right\}$

Initial stiffness

 $\left(\frac{df_c}{d\varepsilon_c}\right)_{\varepsilon_c=0} = \frac{2f_{cc}}{\varepsilon_{cc}}$

In the Kent & Park equation, the initial stiffness depends on the tie reinforcement ratio, however the test results show that it is independent of the tie reinforcement ratio

 $f_c = C_1 \varepsilon_c^{\ n} + C_2 \varepsilon_c + C_3$

Formulation by Hoshikuma, J., Kawashima, K. et al (1997)

(

$$f_{c} = \begin{cases} E_{c}\varepsilon_{c} \left\{ 1 - \frac{1}{n} \left(\frac{\varepsilon_{c}}{\varepsilon_{cc}}\right)^{n-1} \right\} & \text{Ascending branch} \\ f_{cc} - E_{des}(\varepsilon_{c} - \varepsilon_{cc}) & \text{Descending branch} \end{cases}$$

$$n = \frac{E_c \varepsilon_{cc}}{E_c \varepsilon_{cc} - f_{cc}},$$

$$f_{cc} = f_c' + 3.8 \cdot \alpha \cdot \rho_s \cdot f_{yh}$$

$$E_{des} = 11.2 \frac{f_c}{\rho_s \cdot f_{yh}}$$

Formulation by Hoshikuma, J. and Kawashima, K. et al (1997)

Applicability of the Empirical Model

11) **除荷および再載荷履歴の定式化** 11) Formulation of Unloading & reloading paths

Uniaxial Loading Test on Concrete Cylinders

Full Unloading & Reloading Paths (continued)

where

$$\widetilde{f} = \frac{f_c}{f_{ul,n}}$$
$$\widetilde{\varepsilon} = \frac{\varepsilon_c - \varepsilon_{pl,n}}{\varepsilon_{ul} - \varepsilon_{pl,n}}$$

$$E_{rl} = \frac{f_{ul,n+1} - 0.1 f_{ul,n}}{0.8(\varepsilon_{ul} - \varepsilon_{pl,n})}$$

繰り返し載荷の影響 Full Unloadings & Full Reloadings Deterioration rate of the stress at an unloading strain $\sigma_{ul,1}$ $\sigma_{ul.n+1}$ $\sigma_{ul,2}$ σ_{uln} $\sigma_{ul,3}$ Stress Deterioration rate of plastic $\varepsilon_{pl,2}$ strains after fully unloaded $\varepsilon_{pl,1} \ \varepsilon_{pl,3}$ ε_{ul} $\gamma_n = \frac{\varepsilon_{ul} - \varepsilon_{pl.n}}{\varepsilon_{ul} - \varepsilon_{pl.n-1}}$ Strain

$$\rho_{s} = 0.67\%$$

Mander, Priestley & Park (1988)

Interlocking Column

Great Contribution of New Zealand for the Development of Interlocking Spiral Columns

University of Canterbury

Implementation of Interlocking Spiral Columns in USA

Retrofit after 1994 Northridge EQ

Cyclic Loading Test on Interlocking Spiral Columns

Courtesy of Tokyu Construction

Rectangular Hollow Section

Verification on the Effectiveness of Lateral Confinement on Bridge Columns

NO.3 B

....

Public Works Research Institut

10m

Pre-1995 Kobe Earthquake Column

4.5 曲げ非線形性のモデル化 4.5 Idealization of Flexural Hysteretic Behavior

1) Available methods

- Finite Element Analysis Many unknowns, and limited for simple structures
- Fiber Element Analysis Practical constitutive models are required for concrete and reinforcing bars
- Empirical Constitutive Model
 - ✓ Practical, widely used
 - Still good empirical models which take account of bilateral bending and variation of axial force are not available

4) ファイバー要素解析法
4) Fiber Element Analysis
(1) Feature of FEA

• Account for hysteretic behavior of structural members, such as reinforced concrete column and steel columns

•Easy to introduce constitutive laws of structural materials

• Much less computer time than the standard FEM

• Extensively used in seismic design of bridges 34

 $\sigma_s(x)$ Stress of longitudinal rebars at the distance of x from the center of the column

 $\sigma_c(x)$ Stress of concrete fiber at the distance of x from the center of the column

 $\mathcal{E}_{c} + \phi \cdot x$

•X

 $\mathcal{E} =$

 \mathcal{E}

$$N = \int \sigma_s(x) dA + \int \sigma_c(x) dA$$

 $M = \int \sigma_s(x) \cdot x dA + \int \sigma_c(x) \cdot x dA$

(6) Appropriate Idealization of Hysteresis of Confined Concrete and Reinforcing Bars

(7) Pushover Analysis

Increase *F* in one direction to compute moment vs. curvature relation or the lateral force F vs. lateral displacement at the loading point

Evaluation of Moment vs. Curvature Relation (continued)

Lateral displacement of a column

$$u = \int_0^h \theta dy = \int_0^h \int_0^h \phi(y) dy dy$$