地球環境科学(第3回) 地球温暖化問題と対策、酸性雨問題と対策 クリーン燃焼技術

岡 崎 健 機械制御システム専攻 (機械科学科)

2010年11月11日(木)

Tokyo Institute of Technology

地球温暖化問題

₩

地球温暖化のメカニズム
本陽

$$\pi R^2 S_0 = \frac{1}{4} S_0 A$$

 $\frac{1}{4}(1-A) S_0 T_s^4$
地表面でのエネルギーバランス
 $\frac{1}{4}(1-A) S_0 + E + E G T_a^4 = G T_s^4$
A: アルベド
A: アルベド
A: アルベド
COTa⁴
E G Ta⁴
E G

E ≪
$$\frac{1}{4}(1-A)S_{o}$$

 $T_{a} \simeq T_{s}$ (実際にす $T_{a} < T_{s}$)
 $\therefore \frac{1}{4}(1-A)S_{o} = (1-E)\sigma T_{s}^{4}$
 $T_{s}^{4} = \frac{1-A}{4(1-E)\sigma}S_{o}$
太陽常数 $S_{o} = 1372 \text{ W/m}^{2}$
 $7!V \land \dot{F}$ $A = 0.3$
 $7!7_{5}v\pi_{1}V'_{7}v_{c}$ 数 $\sigma = 5.67 \times 10^{-8} \text{ W/m}^{2}.K$
 $\varepsilon = 0$ (大気吸収なし) $T_{s} = 255 \text{ K}$ (-18°C)
 $\varepsilon = 0.4$ (現 状) $T_{s} = 290 \text{ K}$ (+17°C)
 $\varepsilon = 0.5 \circ c \circ a a c E F$

Tokyo Institute of Technology

 \mathbf{x}

エネルギー源別の二酸化炭素排出原単位

<u>温暖化対策技術の相互比較</u>

- ① 省エネルギーとエネルギー変換・利用効率の向上 複合発電、IGCC, IGFC, コジェネ (水素システム)
- ② 炭素分の少ない軽質燃料への燃料転換 石炭・石油→天然ガス(枯渇進行)(水素化)
- ③ 再生可能エネルギーの大量導入 現状は極微量、長期的には必須 (水素:キャリア)
- ④ **原子力エネルギーの利用拡大** 社会的受容性が必要 (<u>原子力→水素</u>)
- ⑤ CO2の人工的隔離(分離・回収・貯留隔離) 一見華麗ではないが、顕著な量的寄与 各種技術との統合化(水素製造とCO2隔離)

化石燃料・水素・再生可能エネルギー・CO2 隔離の統合 エネルギー・地球環境戦略 「再生可能エネルギー + 水素」時代へのソフトランディングシナリオ

9

School of Engineering

Tokyo Institute of Technology

酸性雨の生成メカニズム

Tokyo Institute of Technology

燃焼により生成する環境汚染物質

相	物	質	総	称
気体	NO, NO2 SO2, SO3 CH4, CnHm <u>CO2</u> その他	, N2O Oi,PAH	NOx SOx HC	
液体	高沸点炭化水 有害物質を含 その他	く素微小滴 んだ微小水滴	ミスト・コ サブミクロ	-アロゾル・ コン粒子
固体	<u>す</u> す・ばいじ 金属酸化物粒 その他	ん 1子	微粒子・コ サブミクロ	cアロゾル・ コン粒子

.

11

 $\mathbf{\nabla}$

Cm Hn +	$\left(m+\frac{n}{4}\right)$	$O_z \rightarrow$	$m CO_2 + \frac{n}{2} H_2O$
Fuel S	>	SOz	
Fuel N	\rightarrow	NOX	(Fuel NOx))燃焼板前 (で低減
Air N2	\rightarrow	NOx	(Thermal NOx))可能
灰分	>	灰粒子	(フライアッシュ)
нс	>	すす	
SOx, NOx		粒子転	換 エアロン・ルレ

 \mathbf{T}

電気集塵器

高圧の電気を流した2つの電極の間に、排ガスを通す と、灰塵は(-)の電気を帯びて(+)個の電極に吸い 寄せられます。電極に吸着し堆積した灰塵を、周期 的な槌打によって集塵器の下部に落として取り除き ます。この原理は、摩擦によって静電気を帯びた下敷 などに紙やゴミが付着するのと同じものです。

排煙脱硝装置

窒素酸化物を含んだ排ガスにアンモニアを加えて、 金属系の触媒(化学反応を起こさせる物質)の中 を通します。排ガス中の窒素酸化物は、触媒の働 きで化学反応を起こし、窒素と水に分解します。

反応式 4NO + 4NH₃ + O₂ → 4N₂ + 6H₂O (一酸化窒素) (アンモニア) (窒素ガス) 6NO₂ + 8NH₃ → 7N₂ + 12H₂O (二酸化窒素) (窒素ガス)

排煙脱硫装置

石灰石を粉状にして水との混合液(石灰石スラリー) を作り、これを排ガスに噴霧すると、排ガス中の硫黄 酸化物と石灰が反応して亜硫酸カルシウムになりま す。この亜硫酸カルシウムを、さらに酸素と反応させ て、石こうとして取り出します。

反応式

【吸収工程】

SO₂ + CaCO₃ + 1/2H₂O → CaSO₃ • 1/2H₂O + CO₃ (亜硫酸ガス)(石灰石スラリー) (亜硫酸カルシウム)(炭酸ガス)

【酸化工程】

CaSO₃ + 1/2H₂O + 1/2O₃ + 3/2H₂O → CaSO₄ • 2H₂O (亜硫酸カルシウム) (石こう)

Tokyo Institute of Technology

₩.

NOx Control Methods and the Progress in Japan

Tokyo Institute of Technology

 \mathbf{x}