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Speaker recognition
0103-21

• Speaker verification: confirm the identity claim p y
(banking transactions, database access services,
security control for confidential information)

• Speaker identification: determine from registered• Speaker identification: determine from registered
speakers (criminal investigations)

• Text-dependent methods

• Text independent methods• Text-independent methods

I t i i bilit ( i bilit ti ) f• Intersession variability (variability over time) of 
speech waves and spectra

S t l/lik lih d li ti ( li ti )Spectral/likelihood equalization (normalization)



Applications of speaker recognition technology

• Access control: For physical facilities, computer networks, 
websites and automated password reset services.

• Transaction authentication: For telephone banking and remote 
electronic and mobile purchases (e and m commerce)electronic and mobile purchases (e- and m-commerce).

• Law enforcement: Home-parole monitoring, prison call 
monitoring and corroborating aural/spectral inspections of voice g g p p
samples for forensic analysis.

• Speech data management: Label incoming voice mail with 
k f b i d/ ti A t t d dspeaker name for browsing and/or action.  Annotate recorded 

meetings or video with speaker labels for quick indexing and 
filing.g

• Personalization: Store and retrieve personal setting/preferences 
for multi-user site or device.  Use speaker characteristics  for 
di t d d ti t idirected advertisement or services.



Principal structure of speaker recognition systems
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Basic structure of speaker recognition systems
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Basic structure of speaker recognition systems (cont.)
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Example of typical intraspeaker and interspeaker 
distance distributions
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Four conditional probabilities
in speaker verification
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in speaker verification

s                      nInput utterance
condition

(customer)       (impostor)Decision 
condition

condition

S (accept) P(S | s)            P(S | n)

N (reject) P(N | s)           P(N | n)



Relationship between error rate and decision 
criterion (threshold) in speaker verification
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Receiver operating characteristic (ROC) curves; performance 
examples of three speaker verification systems: A, B, and D
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Examples of the DET (detection error trade-off) curve
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NIST speaker recognition evaluation (CDET cost)
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Recognition error rates as a function of population size in 
speaker identification and verification
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Text-dependent vs. text-independent methods
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Text-dependent methods are usually based on template p y p
matching techniques.  The structure of the systems is, 
therefore, rather simple.  Since this method can directly 

l i h i i di id li i d i h h hexploit the voice individuality associated with each phoneme 
or syllable, it generally achieves higher recognition 
performance than the text-independent methodperformance than the text-independent method.

Text-independent methods can be used in several 
applications in which predetermined key words cannot be used.  
A h d i h i b d i ll ilAnother advantage is that it can be done sequentially, until a 
desired significance level is reached, without the annoyance of 
repeating the key words again and againrepeating the key words again and again.



Basic structure of DTW/HMM-based text-
dependent speaker recognition methods
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Block diagram indicating principal operation of speaker recognition 
method using time series of cepstral coefficients and their orthogonal 
polynomial coefficientsp y

Speech wave
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g
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Basic structures of text-independent speaker recognition methods
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Variation of the long-time averaged spectrum at four sessions over 
eight months, and corresponding spectral envelopes derived from 

cepstrum coefficients weighted by the square root of inverse variancescepstrum coefficients weighted by the square root of inverse variances

Sub. W

Sub. T

(b) Envelopes by weighted cepstrum(a) Long-time averaged spectra
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Vector quantization (VQ)-based text-independent speaker recognition

“b a k u o N g a”

kHz0 1 2 3 4

Spectral envelopes

Speaker-specific codebook



A five-state ergodic HMM for text-independent speaker verification
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0012-15Basic structures of text-independent speaker 
recognition methods (cont.)

Speaker-independent
Phoneme/word modelsInput

speech

FeatureFeature
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Phoneme/wordPhoneme/word

recognitionrecognition

Speaker-dependent
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models
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(c) Speech-recognition-based method



Text-prompted speaker recognition method
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This method is facilitated by using speaker-specific phoneme 
models as basic acoustic units.

The recognition system prompts each user with a new keyThe recognition system prompts each user with a new key 
sentence every time the system is used, and accepts the input 
utterance only when it decides that the registered speaker has 
uttered the prompted sentence.

Because the vocabulary is unlimited, prospective impostors y , p p p
cannot know in advance what sentence they will be asked to 
repeat.  Thus a pre-recorded voice can easily be rejected.

One of the major issues in this method is how to properly create 
the speaker-specific phoneme models with training utterances of p p p g
a limited size for each speaker.



Block diagram of the text-prompted speaker recognition method
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T i i d tT i i d t
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Sound spectrograms for word utterances by several speakers

Speaker S /baNgo:/Speaker S /ko:geN/ Same (2 years later)

Speaker M /ko:geN/ Speaker F /ko:geN/ Speaker U /ko:geN/



I t i i bilit ( i bilit ti )
• Speakers

Intersession variability (variability over time)

• Recording and transmission conditions
• Noise

Normalization
• Parameter domain
• Distance/similarity domain
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P t d i li tiParameter-domain normalization

Cepstral mean normalization (subtraction)Cepstral mean normalization (subtraction) 
(CMN, CMS)

• Linear channel effects• Linear channel effects
• Long-term spectral variation

Delta-cepstral coefficients



Distance/similarity-domain normalization
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• Likelihood ratio

log L(X) = log p(X|S=Sc) − log p(X|S≠Sc)

S : claimed speakerSc : claimed speaker

• A posteriori probability• A posteriori probability

l L(X) l (X|S S ) l Σ (X|S)log L(X) = log p(X|S=Sc) − log Σ p(X|S)

R f f k

S∈Ref

Ref : reference speaker

Both are almost equally effective.  Difference exists in whether or not the claimed speaker 
is included in the speaker set for normalization.
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Cohort speakers

l L(X) l (X|S S ) l Σ (X|S≠S )

Cohort speakers

log L(X) = log p(X|S=Sc) − log Σ p(X|S≠Sc)
S∈Cohort

•Typical of the general population, or

• Population near the claimed speaker

Normalization by a general/world model

• A Gaussian mixture which models the• A Gaussian mixture which models the   
parameter distribution for free-text   
utterances by many speakersutterances by many speakers
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Distance/similarity normalization by impostor/general model
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A fixed-phrase speaker verification system
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Z-Norm (Zero Normalization)
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T-Norm (Test Normalization)
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Speaker authentication approaches

Speaker authenticationSpeaker authentication

Speaker recognitionSpeaker recognition
(A th ti ti b h(A th ti ti b h

Verbal information verification Verbal information verification 
(A th ti ti b b l(A th ti ti b b l(Authentication by speech (Authentication by speech 

characteristics)characteristics)
(Authentication by verbal (Authentication by verbal 

content)content)

SpeakerSpeaker
verificationverification

SpeakerSpeaker
identificationidentification
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Conventional speaker verification system

Training utterances:
“Open sesame”

Training utterances:
“Open sesame”

HMMHMM
trainingtraining

p
“Open sesame”
“Open sesame”

p
“Open sesame”
“Open sesame”

Speaker-Dependent HMM

Enrollment sessionEnrollment session

Test session Identity claim
DatabaseDatabase

Identity claim

SpeakerSpeaker
verifierverifier

ScoresTest utterance:
“Open sesame”

Test utterance:
“Open sesame” verifierverifierOpen sesameOpen sesame



Speaker verification system including verbal information verification (VIV)

Pass-phrases of the first few accesses:
Save for
training“Open sesame”“Open sesame” VerbalVerbal

Verified pass-phrases

Open sesame
“Open sesame”
“Open sesame”

Open sesame
“Open sesame”
“Open sesame”

VerbalVerbal
informationinformation
verificationverification

p p
for training

HMM trainingHMM training

Automatic enrollment
Speaker-dependent HMM

Identity claimSpeaker Verification DatabaseDatabase

ScoresTest pass-phrase:
“O ”

Test pass-phrase:
“O ” Speaker verifierSpeaker verifier“Open sesame”“Open sesame” Speaker verifierSpeaker verifier



An example of verbal information verification by asking 
sequential questions

“In which year were you born ?”

Correct Wrong
Get and verify the answer utterance.

“In which city/state did you grow up ?”
Rejection

Correct Wrong
Get and verify the answer utterance.

“May I have telephone number please ?”
Rejection

WrongCorrect g
Get and verify the answer utterance.

Acceptance 
on 3 utterances

Rejection



Utterance verification in verbal information verification (VIV)

Phone/subword transcription for
“Murray Hill”“Murray Hill”

Target likelihoods
( ) ( )
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( ) ( )mmOPOP λλ ...11

Phone Anti“M Hill”
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decodingdecoding measuremeasure
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boundaries likelihoods
“Murray Hill” decodingdecoding
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λ

λ
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11

computation

SI HMM’s for the 
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computationmλλ ,...,1
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Speaker information contained in word bigrams, tabulated 
over the whole SwitchBoard corpus  (G. Doddington)
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Speaker recognition by idiolectal differences between speakers
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“Person authentication by voice: A need for caution”
AFCP and SpLC SIG of ISCAAFCP and SpLC SIG of ISCA

Proc. Eurospeech 2003, pp. 33-36

“At the present time, there is no scientific process 
that enables one to uniquely characterize a person’s a e ab es o e o u que y c a ac e e a pe so s
voice or to identify with absolute certainty an 
individual from his or her voice.”



The following prerequisites are required to provide a 
reasonable level of performance in speaker recognitionreasonable level of performance in speaker recognition 

• Speakers must not try to disguise their voice.
• The recording conditions and signal processing• The recording conditions and signal processing 

techniques are known or controlled.
Speech recorded in similar conditions as the test signal• Speech, recorded in similar conditions as the test signal, 
is available to register a speaker in the system.

f l f i il i h• Reference values for similarity measures must have 
been established in similar conditions as the test signal.  
Decision thresholds must have been calibrated fromDecision thresholds must have been calibrated from 
these reference values and tuned as a function of a 
specific applicationspecific application.



Applying additional constraints can result in 
i d fimproved performance:

k b d• Speakers must be willing to be recognized and 
cooperate with the system.

• Potential impersonators must be prevented from using 
sophisticated technology to modify or disguise their 

ivoice.
• The use of speech synthesis devices is not allowed.p y
• The linguistic content of the message includes words 

already known to the system, so that the similarityalready known to the system, so that the similarity 
between different voices can be calculated on the basis 
of similar contents.



Prototypical diarization system

Speech detection

Audio

Speech detection

Change detection

Gender/Bandwidth classification
W: wide bandwidth
T: narrow/telephone bandwidth
M: male

Cluster Cluster Cluster Cluster

WM
TM TF

WF
M: male
F: female

Cluster Cluster Cluster Cluster

Cluster re combinationCluster re-combination

Re-segmentationRe segmentation

Speaker times/labels


