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Robust speech recognition

» Robust against voice variation due to individuality, the
physical and psychological condition of the speaker,
telephone sets, microphones, network characteristics,
additive background noise, speaking styles, etc.

» Few restrictions on tasks and vocabulary
* Essential to develop automatic adaptation techniques

« Unsupervised, on-line, incremental adaptation is ideal
the system works as 1f 1t were a speaker/task-
independent system, and it performs increasingly
better as 1t 1s used
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HMM composition (PMC) process for creating a noisy
speech HMM as a product of two source HMMs
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Adaptation issues

o \What’s given — HMM, codebook, adaptation data, etc.
e Assumptions — Bayesian, transformation, combined
e Correlation — Unit and model parameter dependency

e Supervision — Supervised vs. unsupervised,
text dependency

 Strategy — Batch, incremental, instantaneous (self
adaptation), on-line vs. off-line

o Efficiency — Rate of adaptation, performance

 Combined equalization, normalization, and adaptation

o Speaker, environment, channel, transducer, task adaptatio4n



Use of constraints in adaptation

e Exploiting correlation structure between parameters:
 (Hierarchical) spectral clustering and smoothing
« Mixture tying
e Codebook mapping
 Probabilistic spectral mapping
» Acoustic bias normalization and context bias modulation
e Stochastic matching

e Set of constraints on model parameters:
» Multiple-regression-based prediction
e Linear transformation between reference and adaptive
vectors (translated into a bias vector and a scaling matrix,
which can be estimated with an EM algorithm)



MLLR (maximu Iikelihood linear regression) for
speaker adaptation of continuous density HMMs

A
n=IC
C=[m, uy,... w,]’: (n +1)-dimensional extended mean vector

u : n-dimensional mean vector

o : offset term

= 1 : include an offset in the regression
o = 0 : 1gnore offsets

u/\: adapted mean vector

[':n X(n+1) transformation matrix maximizing the likelithood of
the adaptation data




Vector Field Smoothing (VFS)

HMM adapted by
MLLR and MAP

Moving vector
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Noise/speaker/task adaptation in the search framework

 Dialogue state/task/speaker-dependent LMs
(e.g. for mixed-initiative dialogue)

Speaker-class-dependent AMSs

Noise-class-dependent AMs

Maximum likeltihood model selection

Maximum likelihood model adaptation



Flexible speech recognition (adaptive search)
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Features of broadcast news and meeting speech

B Frequent speaker changes
B Each speaker continuously utters several sentences

One sentence
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Speaker A Speaker B Speaker A Speaker A Speaker C  Speaker A

B Online, incremental adaptation within a segment 1n

which one speaker utters continuously 1s 1deal .



Speaker adaptation process
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© Sl : Speaker Independent model
© O ® SA : Speaker-Adapted model

(o) Largest likelihood model
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Adaptation algorithm

B MLLR-MAP-VFES algorithm
« MLLR : Maximum Likelihood Linear Regression

« MAP : Maximum A Posteriori estimation
o VFS : Vector Field Smoothing

B Phone clustering for MLLR

7 clusters (silence, consonants, and five Japanese
vowels)
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Speaker adaptation with GMM-based speaker
change detection

B Reduction of the amount of computation :
o Using a single state GMM instead of HMM
o Advantage of GMM : simple structure

B GMMs for speaker change detection
o Speaker adapted GMMs (SA GMMs)

Problem: how to make the SA GMMs




Construction of SA GMM

Many(7) MLLR

. : ==p»  SA HMM
transformation matrices

SIHMM &~ wp

-

A global MLLR

: : ==p»  SA GMM
transformation matrix

SIGMM = ==

B HMM : phone-class clustering

B GMM : transforming SI GMM into SA GMM

using a single global HMM transformation matrix
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On-line incremental speaker adaptation including speaker
change detection (SI: speaker independent, SA: speaker adapted)

Input speech

Likelihood using SI and SA GMMs

Selection of maximum
likelihood model

SI GMM SA GMM
Recognition using ST HMM Recognition using SA HMM
Creation of new SA HMM and Adaptation of the SA HMM and
SA GMM using input speech SA GMM using input speech
| |

v

Re-recognition of input speech
using the adapted SA HMM

Transcription
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MDL-based cluster number decision

IUI b[JEdKEI auap l.cll.IUl I

 MDL: minimum description length criterion

() — _ . Ny, %
[V = long(l.)(X )+2logN+10gI

Pg( )(X ) : likelihood

6?( maximum likelihood estimate for
parameter O of model i (1<i<T)

number of free parameters

i)

 MLLR-based speaker adaptation
- Number of phoneme clusters
- Number of speaker clusters
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Experimental results using GMM for speaker
change detection

WER% . [J Baseline
B HMM-based speaker change detection

B GMM-based speaker change detection

14

13

12

11

10

male female

HMM-based method : 11.8% reduction of WER
GMM-based method : 10.0% reduction of WER

Significant reduction in the amount of computation
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Piecewise-linear transformation for HMM noise adaptation (Noise clustering)
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Piecewise-linear transformation for HMM noise adaptation

(noisy-speech clustering)

' '

Noise-added speech for each noise and SNR condition

|

GMM construction for each noise-added speech

|

Likelihood calculation for each pair of noise-added speech

|

Noise-added speech clustering

}

Noise-added speech for each cluster

l

Noisy speech HMM and GMM construction for each cluster

} 4

< Noisy-speech GMM >

Noisy-speech HMM >

Clusgainfo
Input Noisy-speech MLLR
> GMM selection g Adaptation g <

Adapted
HMM

—
O

ssao001d
uonIu300Y

$s9%01d Sururel],



Effectiveness of the PLT method
(Artificially added crowd noise)

m Input utterance SNR 1s unknown: a noise-cluster HMM is selected
from all noise-cluster HMMs with 0, 10, 15 or 20dB SNR

m Noise cluster GMM 1s used for cluster selection

100

@ Clean HMM
80 | m 8 clusters

. B 16 clusters
S 60 | M 28 clusters —
< O Cluster+MLLR
@)
O 40 ||
<

20 | .:

0

0 dB 10 dB 15 dB
Input SNR
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(Artificially added exhibition hall noise)

Effectiveness of the PLT method

ACC (%)
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Effectiveness of the PLT method
(Real noisy speech from broadcast news)

ACC (%)
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Progress of speech recognition technology since 1980

Spontaneous natural
speech 2-wa conversation
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® Lack of systematic understanding in variability
= Structural or functional variability
- Parametric variability

® Lack of complete structural representations
of (spontaneous) speech

® Lack of data for understanding non-structural
variability
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Spontaneous speech corpora

Spontaneous speech variations: extraneous words,
out-of-vocabulary words, ungrammatical sentences,
disfluency, partial words, repairs, hesitations,
repetitions, style shifting, ....

“There’s no data like more data” — Large structured
collection of speech is essential.

How to collect natural data?

Labeling and annotation of spontaneous speech is
difficult; how do we annotate the variations, how do
the phonetic transcribers reach a consensus when there
1s ambiguity, and how do we represent a semantic

notion?
25



Spontaneous speech corpora (cont.)

« How to ensure the corpus quality?

« Research in automating or creating tools to assist
the verification procedure is by itself an
interesting subject.

« Task dependency: It is desirable to design a task-
independent data set and an adaptation method for
new domains.

Benefit of a reduced application development cost.
26



Overall design of the Corpus of Spontaneous Japanese (CSJ)

For training a morphological
analysis and POS tagging
program
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Test-set perplexity and OOV rate for the two language models
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Unsupervised class-based language model adaptation

Speech
—
Training == General == Decodin \
& language & 4
model Adapted
i 1
t (G-LM) Interpolation = AnEuase
\ model
(A-LM)
Training set S J
Hypothesis
| —
s
Clustering == language ==p Adaptation =8 language
models model
(C-LMs) (C-LM)
. J L J
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Word accuracy vs. interpolation coefficient
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Summary of correlation between various attributes

mmmm= Correlation

° Spurious correlation
Acc

e g
SR

Acc: word accuracy, OR: out of vocabulary rate,
RR: repair rate, FR: filled pause rate,
SR: speaking rate, AL: averaged acoustic frame likelihood,

PP: word perplexity 31




Linear regression models of the word accuracy (%o)
with the six presentation attributes

Speaker-independent recognition

Acc=0.12A1-0.885R-0.020PP-2.20R +0.32FR-3.0RR +95

Speaker-adaptive recognition

Acc=0.024A1-1.35R-0.014PP-2.10R+0.32FR-3.2RR +99

Acc: word accuracy, SR: speaking rate,
PP: word perplexity, OR: out of vocabulary rate,

FR: filled pause rate, R R: repair rate 2




A Bayesian network with five variables

Variables with known values are shaded. Conditional probability functions
(indicated by boxes) are associated with each variable and used to return
numerical values for conditional probabilities.

N\ P(C|A)

Hidden
Var1q1bles

P (D‘ B,C ) ‘\' \ Observation
variables
o -

Joint distribution: P(A,B,C,D,E)=P(A)P(B| B,C)P(E[C)
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Comparison of HMM and Bayesian network

The dashed lines in the HMM represent the acoustic emissions that occur at each time frame

HMM HMM grid: 7-frame utterance
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A Bayesian network representation of
a typical speech recognition HMM

Transitions unambiguous

Position
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Bayesian network representation of HMM
Incorporating speaking rate variations

Phone
Speaking rate
mode Phone state
. Mixture
Speaking rate
observation
Transition
Acoustic

observation
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Automatic summarization based on the combination of
Important sentence extraction and sentence compaction

Spontaneous Speech

Y

Speech recognition }
[

Recognition results

Acoustic model

Language model

lSummarization

(Word frequency) Sentence extraction

!

Sentence compaction 1

1

Summary
*Records *Captions
*Minutes eIndexes

(Aiqeqoad Joudysod piopy )

Summarization
language model

Word dependency
probability

_l_’
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Modality-oriented classification of multimodal systems

Input modalities

- i nventional
Speech Gesture Handwriting Facial features co i\fpl,tjlto a
Continuous sp. 2D Cursive script Eye movement/ Keyboard
Discrete sp. 3D Printed script gaze Pointing device
Isolated words Isolated digits/ Lip movement Touch screen
Spelled words characters
Output modalities
: Non-speech Haptic/
Speech Text Graphics audio tactile
Printed Images video Sound clips Pneumatic
audio visual tactile iti -
handwriting Music Vibrotactile
Earcons
Talking face

Electrotactile

38
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Task-oriented taxonomy of multimodal applications

Interactive

Non-interactive

Mediation of human-human
| interaction

Collaborative work Translation
Teleconferencing

'Human-computer interaction

Transcription

ndexing of multimedia data

: Command &
Entertainment
control
Games Animations Robot control Voice
Interactive TV operation Security-
access

Translations & Data entry &

queries ~ man

Other

ipulation

Call centers Electronic
commerce

Tutoring/education
Smart rooms  Virtual
reality Wearable
computing

- Simple data entry -

Form filling PDAs

Text & multimedia

Dictation

Programming Web
authoring Ul

design tool 39
User-based indexing



Taxonomy of system-level evaluation techniques

Evaluation techniques

Predictive models

Empirical model
Theory-based model

Experimental

techniques

Benchmark
evaluation User
study (Prototype)
Simulation (WoZ)
Interactive design

Expert evaluations
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Multimodal human-machine communication (HMC)

Spoken language

Speech recognition
TTS synthesis

Text
(Keyboard)

Svner
e D usiony
Handwriting . S1 gn
(Fusion)

Visual I/0
{ Display

Lips/face recognition 41



Architecture of multimodal human/computer interaction
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Visual
processing
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Multimodal speech and speaker recognition

Lip movement

Frontal face
Side face

Ear image
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Audio-visual speech recognition system using optical-flow analysis

Audio-visual
features

e
(41dim., 100Hz)

A fS8dim., 100k
sigha 5 im., z
° . Acoustic
(16kHz) | Parameterization
Y
Feature fusion
A
\éigual features
V_isuall 1:Visual : (2dim., 100H)
signa Visual eatures
Q O
L = . . = Interpolatlon
(15H7) parameterization ‘\ (fs?h”z‘)
— Gray- s | PE ] Noise -y Optical-flow Variances e
scalization addition computation calculation

Triphone HMMs

01010}

Recognition result
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Audio-only and audio-visual
connected digit recognition accuracy

SNR(dB) Audio-only Audio-visual (1,)
5 39.50% 44.95% (0.86)
10 58.55% 70.78% (0.90)
20 94.66% 94.51% (0.94)
0 97.59% 97.96% (0.96)

(A4- optimum audio-weighting factor) 45




Recognition results using frontal-face images

Training data
— 11 male speakers
— Clean conditions

— Strings of 2 to 6 connected digits

in Japanese

s co o4 SO9 5P - 00041

— 250 strings per speaker

Testing data
— 6 male speakers

— Real car environment (10-15 dB SNR)

Visual parameters

— Maximum and minimum values of the integral of optical-flow

vectors

Stream weight is optimized

Digit error rate:

Audio-only

Audio-visual

41.5%

36.2% s




Recognition results using side-face images

Database
— 38 male speakers
— Clean conditions

— Strings of 4 connected digits in
Japanese

— 50 strings per speaker

Testing data
— 19 male speakers

— Contaminated with white noise 2o L[ —# Audio-only

—@— Audio-visual

(o)}
o
|

Visual parameters 0.45

— Horizontal and vertical variances
of the flow vector components

la : optimized audio stream weight

a1
o
|

Didit error rate (%)
N
o

Stream weight 30 -
— Optimized at each SNR 20 |
condition ol
Aa=0.80
0

clean 20 15 10 5
SNR (dB) "



Multimedia contents technology
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Multimedia information (Broadcast news, etc.)

Image processing

Speech recognition Information retrieval

Information extraction and retrieval of spoken language content
(Spoken document retrieval, information indexing, story segmentation,
topic tracking, topic detection, etc.)
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summary

Two major speech recognition applications are
conversational systems for accessing information services
and systems for transcribing, understanding and
summarizing ubiquitous speech documents.

How to cope with additive noise and intra- and inter-
speaker variability and how to model and recognize
spontaneous speech are the most important issues.

Speech recognition is a search process in a super-high-
dimensional non-linear space.

Construction of a large-scale spontaneous speech corpus Is
crucial.

Multimodal human-computer communication and
Information extraction has a bright future.
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