Speech Analysis

Sadaoki Furui Tokyo Institute of Technology Department of Computer Science furui@cs.titech.ac.jp

Sampling in the time domain

Sampling in the frequency domain

An example of the input-output characteristics of eight-level (3-bit) quantization

Feature vector (short-time spectrum) extraction from speech

Vocal tract parameters

Block diagram of a typical speech analysis procedure.

0110-09

Structure of short-time speech spectra for male voices when uttering vowel /a/ and consonant /tʃ/

Major methods for analyzing speech spectra and their principal features

Туре	Analysis methods	Parameters	Features
NPA	(i) Short-time autocorrelation	φ(<i>m</i>)	Spectral envelope and fine structure are convoluted.
	(ii) Short-time spectrum	<i>S</i> (ω)	Spectral envelope and fine structure are multiplied. Fast algorithm can be realized by FFT.
	(iii) Cepstrum	<i>c</i> (τ)	Spectral envelope and fine structure can be Separated in quefrency domain. Two FFTs and log transform are necessary.
	(iv) Band-pass filter bank	rms of filter output	Global spectral envelope can be obtained.
	(v) Zero-crossing analysis	Zero-crossing rate	Formant freq. Can be obtained by Combination with (iv). Realized by simple hardware.
PA	(i) Analysis-by -synthesis	Formant, band-width, etc.	Precise modeling is possible. Accurate formant freq. can be obtained. Complicated iteration is necessary.
	(ii) Linear predictive coding		Simple all-pole spectrum modeling.Parameters can be estimated from auto-corr. or ovariance without iteration.

Major methods for analyzing speech spectra and their principal features (continued)

Туре	Analysis methods	Parameters	Features
PA (cont.)	(ii-a) Maximum likelihood method	α_i	Stability of synthesis filter is guaranteed. Time window is necessary. Number of calculations $\propto p^2$
	(ii-b) Convariance method	α_i	Stability of synthesis filter is not guaranteed. Suitable for short-time analysis. Number of calculations $\propto p^3$
	(ii-c) PARCOR method	k _i	Normal equation can be solved by lattice filter. Equivalent to (a) and (b). Number of calculations $\propto p^2$
	(ii- <i>d</i>) LSP method	ω _i	Quantization and interpolation characteristics are good. Similar to formant. Number of calculation is slightly larger than for PARCOR.

Spectral structure of speech

Log spectrum and Cepstrum

Block diagram of cepstrum analysis for extracting spectral envelope and fundamental period Examples of short-time spectra (left) and cepstra (right) for male voice when uttering "(r)azor". Sampling frequency 10kHz; Hamming window length 40ms; frame interval 10ms.

Comparison of spectral envelopes by LPC, LPC cepstrum, and FFT cepstrum methods

Principle of analysis-by-synthesis (A-b-S) method

Principles of LPC analysis

Linear prediction model block diagram

Comparison of matching error measure in maximum likelihood method, $G_1(d)$, with that in analysis-by-synthesis (A-b-S) method, $G_2(d)$. $d = \log\{f(\lambda) / \hat{f}(\lambda)\}; f(\lambda) = \text{model spectrum}; \hat{f}(\lambda) = \text{short-term spectrum}.$

Comparison of (a) short-term spectra and (b) spectral envelopes obtained by the maximum likelihood method

Time function of spectral envelopes for the Japanese phrase /bakuoNga/ uttered by a male speaker

Definition of PARCOR coefficients

(a) PARCOR coefficient extraction circuit constructed by cascade connection of partial autocorrelators

(b) Construction of each partial autocorrelator

Principal construction features of synthesis filter using PARCOR coefficients

Equivalent transformations for lattice-type digital filter

Structure of PARCOR analysis-synthesis system

Structure of the (channel) vocoder

Relationship between PARCOR coefficients $\{k_n\}$ and vocal tract area function $\{A_n\}$

Examples of spectral envelopes and estimated area function for five vowels

0106-17

An example of LSP analysis

Signal flow graph of LSP synthesis filter

Mutual relationships between parameters based on all-pole spectrum modeling