
Machine Learning
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Implementation:
Real machine learning schemes

 Decision trees: from ID3 to C4.5
 Pruning, missing values, numeric attributes, efficiency

 Decision rules: from PRISM to Induct and PART
 Missing values, numeric attributes, computing 

significance, rules with exceptions

 Extended linear classification: support vectors
 Non-linear boundaries, max margin hyperplane, kernels

 Instance-based learning
 Speed up, combat noise, attribute weighting, 

generalized exemplars

 Numeric prediction
 Regression/model trees, locally weighted regression

 Clustering: hierarchical, incremental, probabilistic
 K-means, heuristic, mixture model, EM, Bayesian
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Industrial-strength 
algorithms

 For an algorithm to be useful in a wide 
range of real-world applications it must:
 Permit numeric attributes
 Allow missing values
 Be robust in the presence of noise
 Be able to approximate arbitrary concept 

descriptions (at least in principle) 

 Basic schemes need to be extended to 
fulfill these requirements
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Decision trees

Extending ID3:
to permit numeric attributes: straightforward
to dealing sensibly with missing values: trickier
stability for noisy data:

requires pruning mechanism

End result: C4.5 (Quinlan)
Best-known and (probably) most widely-used 

learning algorithm
Commercial successor: C5.0
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Numeric attributes

 Standard method: binary splits
 E.g. temp < 45

 Unlike nominal attributes,
every attribute has many possible split points

 Solution is straightforward extension: 
 Evaluate info gain (or other measure)

for every possible split point of attribute
 Choose “best” split point
 Info gain for best split point is info gain for 

attribute

 Computationally more demanding
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Weather data (again!)
Outlook Temperature Humidity Windy Play

Sunny Hot High False No

Sunny Hot High True No

Overcast Hot  High False Yes

Rainy Mild Normal False Yes

… … … … …

If outlook = sunny and humidity = high then play = no
If outlook = rainy and windy = true then play = no
If outlook = overcast then play = yes
If humidity = normal then play = yes
If none of the above then play = yes

Outlook Temperature Humidity Windy Play

Sunny 85 85 False No

Sunny 80 90 True No

Overcast 83 86 False Yes

Rainy 75 80 False Yes

… … … … …

If outlook = sunny and humidity > 83 then play = no
If outlook = rainy and windy = true then play = no
If outlook = overcast then play = yes
If humidity < 85 then play = yes
If none of the above then play = yes
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Example

 Split on temperature attribute:

 E.g. temperature < 71.5: yes/4, no/2
temperature ≥ 71.5: yes/5, no/3

 Info([4,2],[5,3])
= 6/14 info([4,2]) + 8/14 info([5,3]) 
= 0.939 bits

 Place split points halfway between values
 Can evaluate all split points in one pass!

64     65     68     69     70     71     72     72     75     75     80     81     83     85
Yes  No  Yes Yes  Yes  No  No  Yes Yes  Yes  No  Yes  Yes No
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Avoid repeated sorting!

 Sort instances by the values of the numeric 
attribute
 Time complexity for sorting: O (n log n) 

 Does this have to be repeated at each node 
of the tree?

 No! Sort order for children can be derived 
from sort order for parent
 Time complexity of derivation: O (n)
 Drawback: need to create and store an array 

of sorted indices for each numeric attribute 
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Binary vs multiway splits

 Splitting (multi-way) on a nominal attribute 
exhausts all information in that attribute
 Nominal attribute is tested (at most) once on 

any path in the tree

 Not so for binary splits on numeric 
attributes!
 Numeric attribute may be tested several times 

along a path in the tree

 Disadvantage: tree is hard to read
 Remedy:

 pre-discretize numeric attributes, or
 use multi-way splits instead of binary ones
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Computing multi-way 
splits

 Simple and efficient way of generating 
multi-way splits: greedy algorithm

 Dynamic programming can find optimum 
multi-way split in O (n2) time
 imp (k, i, j ) is the impurity of the best split of 

values xi … xj into k sub-intervals
 imp (k, 1, i ) =

min0<j <i imp (k–1, 1, j ) + imp (1, j+1, i )
 imp (k, 1, N ) gives us the best k-way split

 In practice, greedy algorithm works as well 
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Missing values

 Split instances with missing values into 
pieces
 A piece going down a branch receives a 

weight proportional to the popularity of the 
branch

 weights sum to 1

 Info gain works with fractional instances
 use sums of weights instead of counts

 During classification, split the instance into 
pieces in the same way
 Merge probability distribution using weights
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Pruning

 Prevent overfitting to noise in the data
 “Prune” the decision tree
 Two strategies:

• Postpruning
take a fully-grown decision tree and discard 
unreliable parts

• Prepruning
stop growing a branch when information 
becomes unreliable

 Postpruning preferred in practice—
prepruning can “stop early”
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Prepruning

 Based on statistical significance test
 Stop growing the tree when there is no 

statistically significant association between any 
attribute and the class at a particular node

 Most popular test: chi-squared test
 ID3 used chi-squared test in addition to 

information gain
 Only statistically significant attributes were 

allowed to be selected by information gain 
procedure
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Early stopping

 Pre-pruning may stop the growth process 
prematurely: early stopping

 Classic example: XOR/Parity-problem
 No individual attribute exhibits any significant 

association to the class
 Structure is only visible in fully expanded tree
 Prepruning won’t expand the root node

 But: XOR-type problems rare in practice
 And: prepruning faster than postpruning

a b class

1 0 0 0

2 0 1 1

3 1 0 1

4 1 1 0
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Postpruning
 First, build full tree
 Then, prune it
 Fully-grown tree shows all attribute interactions 

 Problem: some subtrees might be due to 
chance effects

 Two pruning operations: 
 Subtree replacement
 Subtree raising

 Possible strategies:
 error estimation
 significance testing
 MDL principle
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Subtree
replacement
 Bottom-up
 Consider replacing a tree 

only after considering all 
its subtrees

Attribute Type 1 2 3 … 40

Duration (Number of years) 1 2 3 2
Wage increase first year Percentage 2% 4% 4.3% 4.5
Wage increase second year Percentage ? 5% 4.4% 4.0
Wage increase third year Percentage ? ? ? ?
Cost of living adjustment {none,tcf,tc} none tcf ? none
Working hours per week (Number of hours) 28 35 38 40
Pension {none,ret-allw, empl-cntr} none ? ? ?
Standby pay Percentage ? 13% ? ?
Shift-work supplement Percentage ? 5% 4% 4
Education allowance {yes,no} yes ? ? ?
Statutory holidays (Number of days) 11 15 12 12
Vacation {below-avg,avg,gen} avg gen gen avg
Long-term disability assistance {yes,no} no ? ? yes
Dental plan contribution {none,half,full} none ? full full
Bereavement assistance {yes,no} no ? ? yes
Health plan contribution {none,half,full} none ? full half
Acceptability of contract {good,bad} bad good good good
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Subtree
replacement
 Bottom-up
 Consider replacing a tree 

only after considering all 
its subtrees
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Subtree raising
 Delete node
 Redistribute instances
 Slower than subtree 

replacement
(Worthwhile?)
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Estimating error rates

 Prune only if it reduces the estimated error
 Error on the training data is NOT a useful 

estimator
(would result in almost no pruning)

 Use hold-out set for pruning
(“reduced-error pruning”)

 C4.5’s method
 Derive confidence interval from training data
 Use a heuristic limit, derived from this, for 

pruning
 Standard Bernoulli-process-based method
 Shaky statistical assumptions (based on 

training data)
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C4.5’s method

 Error estimate for subtree is weighted sum 
of error estimates for all its leaves

 Error estimate for a node:

 If c = 25% then z = 0.69 (from normal 
distribution)

 f is the error on the training data
 N is the number of instances covered by 

the leaf
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Example

f=0.33 
e=0.47

f=0.5 
e=0.72

f=0.33 
e=0.47

f = 5/14 
e = 0.46
e < 0.51
so prune!

Combined using ratios 6:2:6 gives 0.51

Example
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Complexity of tree 
induction

Assume
m attributes
n training instances
tree depth O (log n)

Building a tree O (m n log n)
Subtree replacement O (n)
Subtree raising O (n (log n)2)
Every instance may have to be redistributed at 

every node between its leaf and the root
Cost for redistribution (on average): O (log n)

Total cost: O (m n log n) + O (n (log n)2)
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From trees to rules
Simple way: one rule for each leaf
C4.5rules: greedily prune conditions from 

each rule if this reduces its estimated error
Can produce duplicate rules
Check for this at the end

Then
look at each class in turn
consider the rules for that class
find a “good” subset (guided by MDL)

Then rank the subsets to avoid conflicts
Finally, remove rules (greedily) if this 

decreases error on the training data
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C4.5: choices and options

 C4.5rules slow for large and noisy datasets
 Commercial version C5.0rules uses a 

different technique
 Much faster and a bit more accurate

 C4.5 has two parameters
 Confidence value (default 25%):

lower values incur heavier pruning
 Minimum number of instances in the two most 

popular branches (default 2)
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Discussion

 The most extensively studied method of 
machine learning used in data mining

 Different criteria for attribute/test selection 
rarely make a large difference

 Different pruning methods mainly change 
the size of the resulting pruned tree

 C4.5 builds univariate decision trees
 Some TDITDT systems can build 

multivariate trees (e.g. CART)

TDIDT: Top-Down Induction of Decision Trees
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Classification rules

 Common procedure: separate-and-conquer
 Differences:

 Search method (e.g. greedy, beam search, ...)
 Test selection criteria (e.g. accuracy, ...)
 Pruning method (e.g. MDL, hold-out set, ...)
 Stopping criterion (e.g. minimum accuracy)
 Post-processing step

 Also: Decision list
vs.

one rule set for each class
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Test selection criteria
 Basic covering algorithm:

 keep adding conditions to a rule to improve its accuracy
 Add the condition that improves accuracy the most

 Measure 1: p/t
 t total instances covered by rule

p number of these that are positive
 Produce rules that don’t cover negative instances,

as quickly as possible
 May produce rules with very small coverage

—special cases or noise?

 Measure 2: Information gain p (log(p/t) – log(P/T))
 P and T the positive and total numbers before the new 

condition was added
 Information gain emphasizes positive rather than negative 

instances

 These interact with the pruning mechanism used
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Missing values,
numeric attributes

 Common treatment of missing values:
for any test, they fail
 Algorithm must either

 use other tests to separate out positive instances
 leave them uncovered until later in the process

 In some cases it’s better to treat “missing” 
as a separate value

 Numeric attributes are treated just like they 
are in decision trees



29

Pruning rules

 Two main strategies:
 Incremental pruning
 Global pruning

 Other difference: pruning criterion
 Error on hold-out set (reduced-error pruning)
 Statistical significance
 MDL principle

 Also: post-pruning vs. pre-pruning
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INDUCT

 Performs incremental pruning

Initialize E to the instance set
Until E is empty do

For each class C for which E contains an instance
Use basic covering algorithm to create best perfect
rule for C

Calculate m(R): significance for rule
and m(R-): significance for rule with final

condition omitted 
If m(R-) < m(R), prune rule and repeat previous step

From the rules for the different classes, select the most
significant one (i.e. with smallest m(R))

Print the rule
Remove the instances covered by rule from E

Continue 
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Computing significance

 INDUCT’s significance measure for a rule:
 Probability that a completely random rule with 

same coverage performs at least as well

 Random rule R selects t cases at random 
from the dataset

 How likely it is that p of these belong to the 
correct class?

 This probability is given by the 
hypergeometric distribution
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Hypergeometric 
distribution
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Binomial
distribution

 Hypergeometric is hard to 
compute

 Approximation: sample
with replacement

instead of
without replacement
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Using a pruning set

 For statistical validity, must evaluate 
measure on data not used for training:
 This requires a growing set and a pruning set

 Reduced-error pruning :
build full rule set and then prune it

 Incremental reduced-error pruning :
simplify each rule as soon as it is built
 Can re-split data after rule has been pruned

 Stratification advantageous
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Incremental reduced-error 
pruning

Initialize E to the instance set
Until E is empty do

Split E into Grow and Prune in the ratio 2:1
For each class C for which Grow contains an instance

Use basic covering algorithm to create best perfect rule
for C

Calculate w(R): worth of rule on Prune
and w(R-): worth of rule with final condition

omitted 
If w(R-) > w(R), prune rule and repeat previous step

From the rules for the different classes, select the one
that’s worth most (i.e. with largest w(R))

Print the rule
Remove the instances covered by rule from E

Continue 
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Measures used in incr. 
reduced-error pruning

 [p + (N – n)] / T 
 (N is total number of negatives)
 Counterintuitive:

 p = 2000 and n = 1000 vs. p = 1000 and n = 1

 Success rate p / t
 Problem: p = 1 and t = 1

vs. p = 1000 and t = 1001
 (p – n) / t

 Same effect as success rate because it equals 
2p/t  – 1

 Seems hard to find a simple measure of a 
rule’s worth that corresponds with intuition

 Use hypergeometric/binomial measure?
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Variations

 Generating rules for classes in order
 Start with the smallest class
 Leave the largest class covered by the default 

rule

 Stopping criterion
 Stop rule production if accuracy becomes too 

low

 Rule learner RIPPER:
 Uses MDL-based stopping criterion
 Employs post-processing step to modify rules 

guided by MDL criterion
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PART

 Avoids global optimization step used in 
C4.5rules and RIPPER

 Generates an unrestricted decision list 
using basic separate-and-conquer 
procedure

 Builds a partial decision tree to obtain a 
rule
 A rule is only pruned if all its implications are 

known
 Prevents hasty generalization

 Uses C4.5’s procedures to build a tree
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Building a partial tree

Expand-subset (S):
Choose test T and use it to split set of examples

into subsets
Sort subsets into increasing order of average

entropy
while 

there is a subset X not yet been expanded
AND   all subsets expanded so far are leaves

expand-subset(X)
if

all subsets expanded are leaves
AND estimated error for subtree 

≥ estimated error for node
undo expansion into subsets and make node a leaf
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Example
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Notes on PART

 Make leaf with maximum coverage
into a rule

 Treat missing values just as C4.5 does 
 I.e. split instance into pieces

 Time taken to generate a rule:
 Worst case: same as for building a pruned tree

 Occurs when data is noisy

 Best case: same as for building a single rule
 Occurs when data is noise free
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Rules with exceptions

 Idea: allow rules to have exceptions
 Example: rule for iris data

 New instance:

 Modified rule:

If petal-length ≥ 2.45 and petal-length < 4.45
then Iris-versicolor

Sepal
length

Sepal
width

Petal
length

Petal
width

Type

5.1 3.5 2.6 0.2 Iris-setosa

If petal-length ≥ 2.45 and petal-length < 4.45
then Iris-versicolor 

EXCEPT if petal-width < 1.0 then Iris-setosa
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A more complex example

 Exceptions to exceptions to exceptions …

default: Iris-setosa
except if petal-length ≥ 2.45 and petal-length < 5.355

and petal-width < 1.75
then Iris-versicolor

except if petal-length ≥ 4.95
and petal-width < 1.55

then Iris-virginica
else if sepal-length < 4.95

and sepal-width ≥ 2.45
then Iris-virginica

else if petal-length ≥ 3.35
then Iris-virginica

except if petal-length < 4.85 
and sepal-length < 5.95

then Iris-versicolor
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Advantages of using 
exceptions

 Rules can be updated incrementally
 Easy to incorporate new data
 Easy to incorporate domain knowledge

 People often think in terms of exceptions
 Each conclusion can be considered just in 

the context of rules and exceptions that 
lead to it
 Locality property is important for 

understanding large rule sets
 “Normal” rule sets don’t offer this advantage



45

More on exceptions

 Default...except if...then...
is logically equivalent to
if...then...else
(where the else specifies what the default 
did)

 But: exceptions offer a psychological 
advantage
 Assumption: defaults and tests early on apply 

more widely than exceptions further down
 Exceptions reflect special cases
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Rules with exceptions

 Given: a way of generating a single good 
rule

 Then: it’s easy to generate rules with 
exceptions

1. Select default class for top-level rule
2. Generate a good rule for one of the 

remaining classes
3. Apply this method recursively to the two 

subsets produced by the rule
(I.e. instances that are covered/not covered)
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Iris data example

Exceptions are represented as
Dotted paths, alternatives as 
solid ones.
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Extending linear 
classification

 Linear classifiers can’t model nonlinear 
class boundaries

 Simple trick:
 Map attributes into new space consisting of 

combinations of attribute values
 E.g.: all products of n factors that can be 

constructed from the attributes

 Example with two attributes and n = 3:
3
23

2
2132

2
12

3
11 awaawaawawx +++=
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Problems with this 
approach

 1st problem: speed
 10 attributes, and n = 5 ⇒ >2000 coefficients
 Use linear regression with attribute selection
 Run time is cubic in number of attributes

 2nd problem: overfitting
 Number of coefficients is large relative to the 

number of training instances
 Curse of dimensionality kicks in
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Support vector machines

 Support vector machines are algorithms for 
learning linear classifiers

 Resilient to overfitting because they learn a 
particular linear decision boundary:
 The maximum margin hyperplane

 Fast in the nonlinear case 
 Use a mathematical trick to avoid creating 

“pseudo-attributes”
 The nonlinear space is created implicitly
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The maximum margin 
hyperplane

 The instances closest to the maximum margin 
hyperplane are called support vectors
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Support vectors

 This means the hyperplane
can be written as

22110 awawwx ++=

aa •+= ∑ )(
 vectorsupp. is 

iybx
i

iiα

 The support vectors define the maximum margin hyperplane!
 All other instances can be deleted without changing its 

position and orientation
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Finding support vectors

 Support vector: training instance for which αi > 0
 Determine αi and b ?—

A constrained quadratic optimization problem
 Off-the-shelf tools for solving these problems
 However, special-purpose algorithms are faster
 Example: Platt’s sequential minimal optimization

algorithm (implemented in WEKA)
 Note: all this assumes separable data!

aa •+= ∑ )(
 vectorsupp. is 

iybx
i

iiα
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Nonlinear SVMs

 “Pseudo attributes” represent attribute 
combinations

 Overfitting not a problem because the 
maximum margin hyperplane is stable
 There are usually few support vectors relative 

to the size of the training set 

 Computation time still an issue
 Each time the dot product is computed, all the 

“pseudo attributes” must be included
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A mathematical trick

 Avoid computing the “pseudo attributes”!
 Compute the dot product before doing the 

nonlinear mapping 
 Example: for

compute

 Corresponds to a map into the instance 
space spanned by all products of n
attributes 

aa •+= ∑ )(
 vectorsupp. is 

iybx
i

iiα

n

i
ii iybx ))((

 vectorsupp. is 

aa •+= ∑α
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Other kernel functions

 Mapping is called a “kernel function”
 Polynomial kernel

 We can use others:

 Only requirement:
 Examples: 

))((
 vectorsupp. is 

aa •+= ∑ iKybx
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Noise

 Have assumed that the data is separable 
(in original or transformed space)

 Can apply SVMs to noisy data by 
introducing a “noise” parameter C

 C  bounds the influence of any one training 
instance on the decision boundary
 Corresponding constraint: 0 ≤ αi ≤ C

 Still a quadratic optimization problem
 Have to determine C by experimentation
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Sparse data

SVM algorithms speed up dramatically if the 
data is sparse (i.e. many values are 0)

Why? Because they compute lots and lots of 
dot products

Sparse data ⇒ compute dot products very 
efficiently

Iterate only over non-zero values 

SVMs can process sparse datasets with 
10,000s of attributes
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Applications

Machine vision: e.g face identification
Outperforms alternative approaches (1.5% 

error)

Handwritten digit recognition: USPS data
Comparable to best alternative (0.8% error)

Bioinformatics: e.g. prediction of protein 
secondary structure

Text classifiation
Can modify SVM technique for numeric 

prediction problems
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Instance-based learning

 Practical problems of 1-NN scheme:
 Slow (but: fast tree-based approaches exist)

 Remedy: remove irrelevant data

 Noise (but: k -NN copes quite well with noise)
 Remedy: remove noisy instances

 All attributes deemed equally important
 Remedy: weight attributes (or simply select)

 Doesn’t perform explicit generalization
 Remedy: rule-based NN approach
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Learning prototypes

 Only those instances involved in a decision 
need to be stored

 Noisy instances should be filtered out
 Idea: only use prototypical examples
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Speed up, combat noise

 IB2: save memory, speed up classification
 Work incrementally
 Only incorporate misclassified instances
 Problem: noisy data gets incorporated

 IB3: deal with noise
 Discard instances that don’t perform well 
 Compute confidence intervals for

 1. Each instance’s success rate
 2. Default accuracy of its class

 Accept/reject instances
 Accept if lower limit of 1 exceeds upper limit of 2
 Reject if upper limit of 1 is below lower limit of 2
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Weight attributes

IB5: weight each attribute
(Weights can be class-specific)

Weighted Euclidean distance:

Update weights based on nearest neighbor
Class correct: increase weight
Class incorrect: decrease weight
Amount of change for i th attribute depends on 

|xi- yi|

222
11

2
1 )(...)( nnn yxwyxw −++−
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Rectangular 
generalizations

Nearest-neighbor rule is used outside 
rectangles

Rectangles are rules! (But they can be more 
conservative than “normal” rules.) 

Nested rectangles are rules with exceptions
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Generalized exemplars

 Generalize instances into hyperrectangles
 Online: incrementally modify rectangles
 Offline version: seek small set of rectangles 

that cover the instances

 Important design decisions:
 Allow overlapping rectangles?

 Requires conflict resolution

 Allow nested rectangles?
 Dealing with uncovered instances?
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Separating generalized 
exemplars

Class 1

Class
2

Separation 
line
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Generalized distance 
functions

Given: some transformation operations on 
attributes

K*: distance = probability of transforming 
instance A into B by chance

Average over all transformation paths
Weight paths according their probability

(need way of measuring this)

Uniform way of dealing with different 
attribute types

Easily generalized to give distance between 
sets of instances 
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Trees for numeric 
prediction

 Regression: the process of computing an 
expression that predicts a numeric quantity

 Regression tree: “decision tree” where each 
leaf predicts a numeric quantity
 Predicted value is average value of training 

instances that reach the leaf

 Model tree: “regression tree” with linear 
regression models at the leaf nodes
 Linear patches approximate continuous 

function
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Linear regression for the 
CPU data

PRP =
- 56.1
+ 0.049 MYCT
+ 0.015 MMIN
+ 0.006 MMAX
+ 0.630 CACH
- 0.270 CHMIN
+ 1.460 CHMAX
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Regression tree for the 
CPU data
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Model tree for the CPU 
data
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Numeric prediction

 Counterparts exist for all schemes 
previously discussed
 Decision trees, rule learners, SVMs, etc.

 All classification schemes can be applied to 
regression problems using discretization
 Discretize the class into intervals
 Predict weighted average of interval midpoints
 Weight according to class probabilities
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Regression trees

 Like decision trees,  but:
 Splitting criterion: minimize intra-subset 

variation
 Termination criterion: std dev becomes small
 Pruning criterion: based on numeric error 

measure
 Prediction: Leaf predicts average 

class values of instances

 Piecewise constant functions
 Easy to interpret
 More sophisticated version: model trees
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Model trees
 Build a regression tree

 Each leaf ⇒ linear regression function
 Smoothing: factor in ancestor’s predictions

 Smoothing formula: 
 Same effect can be achieved by incorporating 

ancestor models into the leaves

 Need linear regression function at each node
 At each node, use only a subset of attributes

 Those occurring in subtree
 (+maybe those occurring in path to the root)

 Fast: tree usually uses only a small subset of 
the attributes 

kn
kqnpp
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Building the tree
 Splitting: standard deviation reduction

 Termination:
 Standard deviation < 5% of its value on full training set
 Too few instances remain (e.g. < 4)

 Pruning:
 Heuristic estimate of absolute error of LR models:

 Greedily remove terms from LR models to minimize 
estimated error

 Heavy pruning: single model may replace whole subtree
 Proceed bottom up: compare error of LR model at internal 

node to error of subtree
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Nominal attributes

Convert nominal attributes to binary ones
Sort attribute by average class value
If attribute has k values,

generate k – 1 binary attributes
 i th is 0 if value lies within the first i , otherwise 1

Treat binary attributes as numeric
Can prove: best split on one of the new 

attributes is the best (binary) split on original
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Missing values

Modify splitting criterion:

To determine which subset an instance goes 
into, use surrogate splitting
Split on the attribute whose correlation with 

original is greatest
Problem: complex and time-consuming
Simple solution: always use the class

Test set: replace missing value with average
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Surrogate splitting based 
on class

Choose split point based on instances with 
known values 

Split point divides instances into 2 subsets
 L (smaller class average)
 R (larger)

m  is the average of the two averages
For an instance with a missing value:
Choose L if class value < m
Otherwise R

Once full tree is built, replace missing values 
with averages of corresponding leaf nodes
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Pseudo-code for M5'

 Four methods:
 Main method: MakeModelTree
 Method for splitting: split
 Method for pruning: prune
 Method that computes error: subtreeError

 We’ll briefly look at each method in turn
 Assume that linear regression method 

performs attribute subset selection based 
on error
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MakeModelTree

MakeModelTree (instances)
{
SD = sd(instances)
for each k-valued nominal attribute
convert into k-1 synthetic binary attributes

root = newNode
root.instances = instances
split(root)
prune(root)
printTree(root)

}
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split

split(node) 
{
if sizeof(node.instances) < 4 or 
sd(node.instances) < 0.05*SD
node.type = LEAF

else
node.type = INTERIOR
for each attribute
for all possible split positions of attribute
calculate the attribute's SDR

node.attribute = attribute with maximum SDR
split(node.left)
split(node.right)

}
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prune

prune(node)
{
if node = INTERIOR then
prune(node.leftChild)
prune(node.rightChild)
node.model = linearRegression(node)
if subtreeError(node) > error(node) then
node.type = LEAF

} 
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subtreeError

subtreeError(node)
{
l = node.left; r = node.right
if node = INTERIOR then
return (sizeof(l.instances)*subtreeError(l)

+ sizeof(r.instances)*subtreeError(r))
/sizeof(node.instances)

else return error(node)
}
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Model tree for servo data
Result
of merging
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Locally weighted 
regression

Numeric prediction that combines
instance-based learning
linear regression

“Lazy”:
computes regression function at prediction time
works incrementally

Weight training instances
according to distance to test instance
needs weighted version of linear regression

Advantage: nonlinear approximation
But: slow
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Design decisions

 Weighting function: 
 Inverse Euclidean distance
 Gaussian kernel applied to Euclidean distance
 Triangular kernel used the same way
 etc.

 Smoothing parameter is used to scale the 
distance function
 Multiply distance by inverse of this parameter
 Possible choice: distance of k th nearest 

training instance (makes it data dependent)
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Discussion

Regression trees were introduced in CART
Quinlan proposed model tree method (M5)
M5’: slightly improved, publicly available
Quinlan also investigated combining 

instance-based learning with M5
CUBIST: Quinlan’s commercial rule learner 

for numeric prediction
Interesting comparison: Neural nets vs. M5
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Clustering

Unsupervised: no target value to predict
Differences between models/algorithms:
Exclusive vs. overlapping
Deterministic vs. probabilistic
Hierarchical vs. flat
Incremental vs. batch learning

Problem:
Evaluation?—usually by inspection

But:
If treated as density estimation problem,
clusters can be evaluated on test data!



89

Hierarchical clustering
 Bottom up

 Start with single-instance clusters
 At each step, join the two closest clusters 
 Design decision: distance between clusters

 E.g.two closest instances in clusters
vs. distance between means

 Top down
 Start with one universal cluster
 Find two clusters
 Proceed recursively on each subset
 Can be very fast

 Both methods produce a
dendrogram g a c i e d k b j f h
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The k-means algorithm

To cluster data into k groups: 
(k is predefined)

1. Choose k cluster centers
 e.g. at random

2. Assign instances to clusters
 based on distance to cluster centers

3. Compute centroids of clusters
4. Go to step 1

 until convergence
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Discussion

 Result can vary significantly
 based on initial choice of seeds

 Can get trapped in local minimum
 Example:

 To increase chance of finding global optimum: 
restart with different random seeds

instances

initial 
cluster 
centres
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Incremental clustering

 Heuristic approach (COBWEB/CLASSIT)
 Form a hierarchy of clusters incrementally
 Start: 

 tree consists of empty root node

 Then: 
 add instances one by one
 update tree appropriately at each stage
 to update, find the right leaf for an instance
 May involve restructuring the tree

 Base update decisions on category utility 
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Clustering weather data
ID Outlook Temp. Humidity Windy

A Sunny Hot High False

B Sunny Hot High True

C Overcast Hot  High False

D Rainy Mild High False

E Rainy Cool Normal False

F Rainy Cool Normal True

G Overcast Cool Normal True

H Sunny Mild High False

I Sunny Cool Normal False

J Rainy Mild Normal False

K Sunny Mild Normal True

L Overcast Mild High True

M Overcast Hot Normal False

N Rainy Mild High True

1

2

3
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Clustering weather data
ID Outlook Temp. Humidity Windy

A Sunny Hot High False

B Sunny Hot High True

C Overcast Hot  High False

D Rainy Mild High False

E Rainy Cool Normal False

F Rainy Cool Normal True

G Overcast Cool Normal True

H Sunny Mild High False

I Sunny Cool Normal False

J Rainy Mild Normal False

K Sunny Mild Normal True

L Overcast Mild High True

M Overcast Hot Normal False

N Rainy Mild High True

4

3

Merge best host 
and runner-up

5

Consider splitt ing the best 
host if merging doesn’t help
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Final hierarchy
ID Outlook Temp. Humidity Windy

A Sunny Hot High False

B Sunny Hot High True

C Overcast Hot  High False

D Rainy Mild High False

Oops! a  and b  are 
actually very similar



Example: the iris data (subset)
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Clustering with cutoff
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Category utility

 Category utility: quadratic loss function
defined on conditional probabilities:

 Every instance in different category ⇒
numerator becomes
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Numeric attributes

 Assume normal distribution:

 Then: 

 Thus

becomes

 Prespecified minimum variance
 acuity parameter
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Probability-based 
clustering

 Problems with heuristic approach:
 Division by k?
 Order of examples?
 Are restructuring operations sufficient?
 Is result at least local minimum of category 

utility?

 Probabilistic perspective ⇒
seek the most likely clusters given the data

 Also: instance belongs to a particular cluster 
with a certain probability
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Finite mixtures

 Model data using a mixture of distributions
 One cluster, one distribution

 governs probabilities of attribute values in that 
cluster

 Finite mixtures : finite number of clusters
 Individual distributions are normal (usually)
 Combine distributions using cluster weights



102

Two-class mixture model
A     51
A     43
B     62
B     64
A     45
A     42
A     46
A     45
A     45

B     62
A     47
A     52
B     64
A     51
B     65
A     48
A     49
A     46

B     64
A     51
A     52
B     62
A     49
A     48
B     62
A     43
A     40

A     48
B     64
A     51
B     63
A     43
B     65
B     66
B     65
A     46

A     39
B     62
B     64
A     52
B     63
B     64
A     48
B     64
A     48

A     51
A     48
B     64
A     42
A     48
A     41

data

model

µA=50, σA =5, pA=0.6       µB=65, σB =2, pB=0.4
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Using the mixture model

 Probability that instance x belongs to 
cluster A:

with 

 Likelihood of an instance given the clusters:
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Learning the clusters

 Assume:
 we know there are k clusters

 Learn the clusters ⇒
 determine their parameters
 I.e. means and standard deviations

 Performance criterion:
 likelihood of training data given the clusters

 EM algorithm
 finds a local maximum of the likelihood
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EM algorithm

 EM = Expectation-Maximization 
 Generalize k-means to probabilistic setting

 Iterative procedure:
 E “expectation” step:

Calculate cluster probability for each instance 
 M “maximization” step:

Estimate distribution parameters from cluster 
probabilities

 Store cluster probabilities as instance weights
 Stop when improvement is negligible
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More on EM

 Estimate parameters from weighted instances

 Stop when log-likelihood saturates

 Log-likelihood: 
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Extending the mixture 
model

 More then two distributions: easy
 Several attributes: easy—assuming 

independence!
 Correlated attributes: difficult

 Joint model: bivariate normal distribution
with a (symmetric) covariance matrix

 n attributes: need to estimate n + n (n+1)/2 
parameters
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More mixture model 
extensions

Nominal attributes: easy if independent
Correlated nominal attributes: difficult
Two correlated attributes ⇒ v1 v2 parameters

Missing values: easy
Can use other distributions than normal: 
“log-normal” if predetermined minimum is given
“log-odds” if bounded from above and below
Poisson for attributes that are integer counts

Use cross-validation to estimate k !
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Bayesian clustering

 Problem: many parameters ⇒ EM overfits
 Bayesian approach : give every parameter 

a prior probability distribution
 Incorporate prior into overall likelihood figure
 Penalizes introduction of parameters

 Eg: Laplace estimator for nominal attributes
 Can also have prior on number of clusters!
 Implementation: NASA’s AUTOCLASS
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Discussion

 Can interpret clusters by using supervised 
learning
 post-processing step

 Decrease dependence between attributes?
 pre-processing step
 E.g. use principal component analysis

 Can be used to fill in missing values
 Key advantage of probabilistic clustering:

 Can estimate likelihood of data
 Use it to compare different models objectively
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