
Machine Learning
Chapter 5. Credibility
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Credibility:
Evaluating what’s been learned

 Issues: training, testing, tuning
 Predicting performance: confidence limits
 Holdout, cross-validation, bootstrap
 Comparing schemes: the t-test
 Predicting probabilities: loss functions
 Cost-sensitive measures
 Evaluating numeric prediction
 The Minimum Description Length principle
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Evaluation: the key to 
success

 How predictive is the model we learned?
 Error on the training data is not a good 

indicator of performance on future data
 Otherwise 1-NN would be the optimum 

classifier!

 Simple solution that can be used if lots of 
(labeled) data is available:
 Split data into training and test set

 However: (labeled) data is usually limited
 More sophisticated techniques need to be used
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Issues in evaluation

 Statistical reliability of estimated differences 
in performance (→ significance tests)

 Choice of performance measure:
 Number of correct classifications
 Accuracy of probability estimates 
 Error in numeric predictions

 Costs assigned to different types of errors
 Many practical applications involve costs
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Training and testing I

 Natural performance measure for 
classification problems: error rate
 Success: instance’s class is predicted correctly
 Error: instance’s class is predicted incorrectly
 Error rate: proportion of errors made over the 

whole set of instances

 Resubstitution error: error rate obtained 
from training data

 Resubstitution error is (hopelessly) 
optimistic!
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Training and testing II

 Test set: independent instances that have 
played no part in formation of classifier
 Assumption: both training data and test data 

are representative samples of the underlying 
problem

 Test and training data may differ in nature
 Example: classifiers built using customer data 

from two different towns A and B
 To estimate performance of classifier from town A in 

completely new town, test it on data from B
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Note on parameter tuning

 It is important that the test data is not 
used in any way to create the classifier

 Some learning schemes operate in two 
stages:
 Stage 1: build the basic structure
 Stage 2: optimize parameter settings

 The test data can’t be used for parameter 
tuning!

 Proper procedure uses three sets: training 
data, validation data, and test data
 Validation data is used to optimize parameters
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Making the most of the 
data

Once evaluation is complete, all the data
can be used to build the final classifier

Generally, the larger the training data the 
better the classifier (but returns diminish)

The larger the test data the more accurate 
the error estimate

Holdout procedure: method of splitting 
original data into training and test set
Dilemma: ideally both training set and test set 

should be large!
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Predicting performance

 Assume the estimated error rate is 25%. 
How close is this to the true error rate?
 Depends on the amount of test data

 Prediction is just like tossing a (biased!) 
coin
 “Head” is a “success”, “tail” is an “error”

 In statistics, a succession of independent 
events like this is called a Bernoulli process
 Statistical theory provides us with confidence 

intervals for the true underlying proportion
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Confidence intervals

 We can say: p lies within a certain specified 
interval with a certain specified confidence

 Example: S=750 successes in N=1000 trials
 Estimated success rate: 75%
 How close is this to true success rate p?

 Answer: with 80% confidence p∈[73.2,76.7]

 Another example: S=75 and N=100
 Estimated success rate: 75%
 With 80% confidence p∈[69.1,80.1]
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Mean and variance

 Mean and variance for a Bernoulli trial:
p, p (1–p)

 Expected success rate f=S/N
 Mean and variance for f : p, p (1–p)/N
 For large enough N, f follows a Normal 

distribution
 c% confidence interval [–z ≤ X ≤ z] for 

random variable with 0 mean is given by:

 With a symmetric distribution:
czXz =≤≤− ]Pr[

]Pr[21]Pr[ zXzXz ≥×−=≤≤−
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Confidence limits
 Confidence limits for the normal distribution with 0 

mean and a variance of 1:

 Thus:

 To use this we have to reduce our random variable 
f to have 0 mean and unit variance

Pr[X ≥ z] z

0.1% 3.09

0.5% 2.58

1% 2.33

5% 1.65

10% 1.28

20% 0.84

40% 0.25

%90]65.165.1Pr[ =≤≤− X

–1     0     1   1.65
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Transforming f

 Transformed value for f :

(i.e. subtract the mean and divide by the standard deviation)

 Resulting equation:

 Solving for p :
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Examples

 f = 75%, N = 1000, c = 80% (so that z = 1.28):

 f = 75%, N = 100, c = 80% (so that z = 1.28):

 Note that normal distribution assumption is only 
valid for large N (i.e. N > 100)

 f = 75%, N = 10, c = 80% (so that z = 1.28):

(should be taken with a grain of salt)

]767.0,732.0[∈p

]801.0,691.0[∈p

]881.0,549.0[∈p
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Holdout estimation

 What to do if the amount of data is limited?
 The holdout method reserves a certain 

amount for testing and uses the remainder 
for training
 Usually: one third for testing, the rest for 

training
 Problem: the samples might not be 

representative
 Example: class might be missing in the test data

 Advanced version uses stratification
 Ensures that each class is represented with 

approximately equal proportions in both subsets
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Repeated holdout method

 Holdout estimate can be made more 
reliable by repeating the process with 
different subsamples
 In each iteration, a certain proportion is 

randomly selected for training (possibly with 
stratificiation)

 The error rates on the different iterations are 
averaged to yield an overall error rate

 This is called the repeated holdout method
 Still not optimum: the different test sets 

overlap
 Can we prevent overlapping?
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Cross-validation

 Cross-validation avoids overlapping test sets
 First step: split data into k subsets of equal size
 Second step: use each subset in turn for testing, 

the remainder for training
 Called k-fold cross-validation
 Often the subsets are stratified before the 

cross-validation is performed
 The error estimates are averaged to yield an 

overall error estimate
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More on cross-validation

 Standard method for evaluation: stratified 
ten-fold cross-validation

 Why ten?
 Extensive experiments have shown that this is 

the best choice to get an accurate estimate
 There is also some theoretical evidence for this

 Stratification reduces the estimate’s variance
 Even better: repeated stratified cross-

validation
 E.g. ten-fold cross-validation is repeated ten 

times and results are averaged (reduces the 
variance)
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Leave-One-Out cross-
validation

 Leave-One-Out:
a particular form of cross-validation:
 Set number of folds to number of training 

instances
 I.e., for n training instances, build classifier n

times

 Makes best use of the data
 Involves no random subsampling 
 Very computationally expensive

 (exception: NN)
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Leave-One-Out-CV and 
stratification

 Disadvantage of Leave-One-Out-CV: 
stratification is not possible
 It guarantees a non-stratified sample because 

there is only one instance in the test set!

 Extreme example: random dataset split 
equally into  two classes
 Best inducer predicts majority class
 50% accuracy on fresh data 
 Leave-One-Out-CV estimate is 100% error!
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The bootstrap
CV uses sampling without replacement
The same instance, once selected, can not be 

selected again for a particular training/test set

The bootstrap uses sampling with 
replacement to form the training set
Sample a dataset of n instances n times with 

replacement to form a new dataset
of n instances

Use this data as the training set
Use the instances from the original

dataset that don’t occur in the new
training set for testing
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The 0.632 bootstrap

 Also called the 0.632 bootstrap
 A particular instance has a probability of 1–1/n

of not being picked
 Thus its probability of ending up in the test 

data is:

 This means the training data will contain 
approximately 63.2% of the instances

368.011 1 =≈





 − −e

n

n
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Estimating error
with the bootstrap

 The error estimate on the test data will be 
very pessimistic 
 Trained on just ~63% of the instances

 Therefore, combine it with the 
resubstitution error:

 The resubstitution error gets less weight 
than the error on the test data

 Repeat process several times with different 
replacement samples; average the results

instances  traininginstancestest  368.0632.0 eeerr ⋅+⋅=
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More on the bootstrap

 Probably the best way of estimating 
performance for very small datasets

 However, it has some problems
 Consider the random dataset from above
 A perfect memorizer will achieve

0% resubstitution error and
~50% error on test data

 Bootstrap estimate for this classifier:

 True expected error: 50%

%6.31%0368.0%50632.0 =⋅+⋅=err
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Comparing data mining 
schemes

 Frequent question: which of two learning 
schemes performs better?

 Note: this is domain dependent!
 Obvious way: compare 10-fold CV 

estimates
 Problem: variance in estimate
 Variance can be reduced using repeated CV
 However, we still don’t know whether the 

results are reliable
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Significance tests

Significance tests tell us how confident we 
can be that there really is a difference

Null hypothesis: there is no “real” difference
Alternative hypothesis: there is a difference
A significance test measures how much 

evidence there is in favor of rejecting the 
null hypothesis

Let’s say we are using 10-fold CV
Question: do the two means of the 10 CV 

estimates differ significantly?
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Paired t-test
 Student’s t-test tells whether the means of 

two samples are significantly different
 Take individual samples using cross-

validation
 Use a paired t-test because the individual 

samples are paired
 The same CV is applied twice

William Gosset
Born: 1876 in Canterbury; Died:  1937 in Beaconsfield, England
Obtained a post as a chemist in the Guinness brewery in Dublin in 
1899. Invented the t-test to handle small samples for quality 
control in brewing. Wrote under the name "Student". 



28

Distribution of the means

 x1 x2 … xk and y1 y2 … yk are the 2k samples for a k-
fold CV

 mx and my are the means
 With enough samples, the mean of a set of 

independent samples is normally distributed

 Estimated variances of the means are 
σx

2/k and σy
2/k

 If µx and µy are the true means then

are approximately normally distributed with
mean 0, variance 1

k
m

x

xx

/2σ
µ−

k
m

y

yy

/2σ

µ−
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Student’s distribution

 With small samples (k < 100) the mean 
follows Student’s distribution with k–1
degrees of freedom

 Confidence limits:

Pr[X ≥ z] z

0.1% 4.30

0.5% 3.25

1% 2.82

5% 1.83

10% 1.38

20% 0.88

Pr[X ≥ z] z

0.1% 3.09

0.5% 2.58

1% 2.33

5% 1.65

10% 1.28

20% 0.84

9 degrees of freedom                 normal distribution
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Distribution of the 
differences

 Let md = mx – my

 The difference of the means (md) also has 
a Student’s distribution with k–1 degrees of 
freedom

 Let σd
2 be the variance of the difference

 The standardized version of md is called the 
t-statistic:

 We use t to perform the t-test

k
mt

d

d

/2σ
=
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Performing the test

• Fix a significance level α
• If a difference is significant at the α% level,

there is a (100-α)% chance that there really is 
a difference

• Divide the significance level by two 
because the test is two-tailed
• I.e. the true difference can be +ve or – ve

• Look up the value for z that corresponds 
to α/2

• If t ≤ –z or t ≥ z then the difference is 
significant

• I.e. the null hypothesis can be rejected
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Unpaired observations

 If the CV estimates are from different 
randomizations, they are no longer paired

 (or maybe we used k -fold CV for one 
scheme, and j -fold CV for the other one)

 Then we have to use an un paired t-test 
with min(k , j) – 1 degrees of freedom

 The t-statistic becomes:
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Interpreting the result
 All our cross-validation estimates are based 

on the same dataset
 Samples are not independent
 Should really use a different dataset sample 

for each of the k estimates used in the test 
to judge performance across different 
training sets

 Or, use heuristic test, e.g. corrected 
resampled t-test
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Predicting probabilities

 Performance measure so far: success rate
 Also called 0-1 loss function:

 Most classifiers produces class probabilities
 Depending on the application, we might 

want to check the accuracy of the 
probability estimates

 0-1 loss is not the right thing to use in 
those cases

∑




i incorrect is prediction if 1
correct is prediction if 0
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Quadratic loss function

 p1 … pk are probability estimates for an instance

 c is the index of the instance’s actual class

 a1 … ak = 0, except for ac which is 1

 Quadratic loss is:

 Want to minimize

 Can show that this is minimized when pj = pj
*, the 

true probabilities
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Informational loss 
function

 The informational loss function is –log(pc),
where c is the index of the instance’s actual class

 Number of bits required to communicate the actual 
class

 Let p1
* … pk

* be the true class probabilities
 Then the expected value for the loss function is:

 Justification: minimized when pj = pj
*

 Difficulty: zero-frequency problem

kk pppp 2
*

12
*
1 log...log −−−
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Discussion

 Which loss function to choose?
 Both encourage honesty
 Quadratic loss function takes into account all 

class probability estimates for an instance
 Informational loss focuses only on the 

probability estimate for the actual class
 Quadratic loss is bounded:

it can never exceed 2
 Informational loss can be infinite

 Informational loss is related to MDL 
principle [later]

∑+
j

jp21
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Counting the cost

 In practice, different types of classification 
errors often incur different costs

 Examples:
 Terrorist profiling

 “Not a terrorist” correct 99.99% of the time

 Loan decisions
 Oil-slick detection
 Fault diagnosis
 Promotional mailing
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Counting the cost

The confusion matrix:

There many other types of cost!
E.g.: cost of collecting training data

Predicted class
Yes No

Actual 
class

Yes True positive False negative

No False positive True negative
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Lift charts

 In practice, costs are rarely known
 Decisions are usually made by comparing 

possible scenarios
 Example: promotional mailout to 1,000,000 

households
• Mail to all; 0.1% respond (1000)
• Data mining tool identifies subset of 100,000 

most promising, 0.4% of these respond (400)
40% of responses for 10% of cost may pay off

• Identify subset of 400,000 most promising, 
0.2% respond (800)

 A lift chart allows a visual comparison 
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Generating a lift chart

 Sort instances according to predicted probability of 
being positive:

 x axis is sample size
y axis is number of true positives

Predicted probability Actual class
1 0.95 Yes
2 0.93 Yes
3 0.93 No

4 0.88 Yes

… … …
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A hypothetical lift chart

40% of responses
for 10% of cost

80% of responses
for 40% of cost
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ROC curves

 ROC curves are similar to lift charts
 Stands for “receiver operating characteristic”
 Used in signal detection to show tradeoff 

between hit rate and false alarm rate over 
noisy channel

 Differences to lift chart:
 y axis shows percentage of true positives in 

sample rather than absolute number

 x axis shows percentage of false positives in 
sample rather than sample size
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A sample ROC curve

 Jagged curve—one set of test data
 Smooth curve—use cross-validation
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Cross-validation and ROC 
curves

 Simple method of getting a ROC curve 
using cross-validation:
 Collect probabilities for instances in test folds
 Sort instances according to probabilities

 This method is implemented in WEKA
 However, this is just one possibility

 The method described in the book generates 
an ROC curve for each fold and averages them 
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ROC curves for two 
schemes

 For a small, focused sample, use method A
 For a larger one, use method B
 In between, choose between A and B with appropriate probabilities
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The convex hull

 Given two learning schemes we can 
achieve any point on the convex hull!

 TP and FP rates for scheme 1: t1 and f1
 TP and FP rates for scheme 2: t2 and f2
 If scheme 1 is used to predict 100×q % of 

the cases and scheme 2 for the rest, then
 TP rate for combined scheme:

q × t1+(1-q) × t2
 FP rate for combined scheme:

q × f1+(1-q) × f2
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Cost-sensitive learning

Most learning schemes do not perform cost-
sensitive learning
They generate the same classifier no matter 

what costs are assigned to the different classes
Example: standard decision tree learner

Simple methods for cost-sensitive learning:
Resampling of instances according to costs
Weighting of instances according to costs

Some schemes can take costs into account 
by varying a parameter, e.g. naïve Bayes
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Measures in information 
retrieval

 Percentage of retrieved documents that are 
relevant: precision=TP/(TP+FP)

 Percentage of relevant documents that are 
returned: recall =TP/(TP+FN)

 Precision/recall curves have hyperbolic shape
 Summary measures: average precision at 20%, 

50% and 80% recall (three-point average recall)
 F-measure=(2×recall×precision)/(recall+precision)
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Summary of measures

Domain Plot Explanation

Lift chart Marketing TP 
Subset 
size

TP
(TP+FP)/(TP+FP+TN+FN)

ROC 
curve

Communications TP rate
FP rate

TP/(TP+FN)
FP/(FP+TN)

Recall-
precision 
curve

Information 
retrieval

Recall
Precision

TP/(TP+FN)
TP/(TP+FP)
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Evaluating numeric 
prediction

Same strategies: independent test set, 
cross-validation, significance tests, etc.

Difference: error measures
Actual target values: a1 a2 …an

Predicted target values: p1 p2 … pn

Most popular measure: mean-squared error

Easy to manipulate mathematically

n
apap nn

22
11 )(...)( −++−
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Other measures

The root mean-squared error :

The mean absolute error is less sensitive to 
outliers than the mean-squared error:

Sometimes relative error values are more 
appropriate (e.g. 10% for an error of 50 
when predicting 500)

n
apap nn ||...|| 11 −++−

n
apap nn

22
11 )(...)( −++−
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Improvement on the mean

 How much does the scheme improve on 
simply predicting the average?

 The relative squared error is (                ):

 The relative absolute error is:

22
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Correlation coefficient

Measures the statistical correlation between 
the predicted values and the actual values

Scale independent, between –1 and +1
Good performance leads to large values!
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Which measure?

 Best to look at all of them
 Often it doesn’t matter
 Example:

A B C D
Root mean-squared error 67.8 91.7 63.3 57.4

Mean absolute error 41.3 38.5 33.4 29.2

Root rel squared error 42.2% 57.2% 39.4% 35.8%

Relative absolute error 43.1% 40.1% 34.8% 30.4%

Correlation coefficient 0.88 0.88 0.89 0.91

 D best
 C second-best
 A, B arguable
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The MDL principle

MDL stands for minimum description length
The description length is defined as:

space required to describe a theory
+

space required to describe the theory’s mistakes

In our case the theory is the classifier and 
the mistakes are the errors on the training 
data

Aim: we seek a classifier with minimal DL
MDL principle is a model selection criterion
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Model selection criteria
 Model selection criteria attempt to find a 

good compromise between:
• The complexity of a model
• Its prediction accuracy on the training data

 Reasoning: a good model is a simple 
model that achieves high accuracy on the 
given data

 Also known as Occam’s Razor :
the best theory is the smallest one
that describes all the facts 

William of Ockham, born in the village of Ockham in Surrey 
(England) about 1285, was the most influential philosopher of 
the 14th century and a controversial theologian. 
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Elegance vs. errors

 Theory 1: very simple, elegant theory that 
explains the data almost perfectly

 Theory 2: significantly more complex 
theory that reproduces the data without 
mistakes

 Theory 1 is probably preferable
 Classical example: Kepler’s three laws on 

planetary motion
 Less accurate than Copernicus’s latest 

refinement of the Ptolemaic theory of epicycles
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MDL and compression

MDL principle relates to data compression:
The best theory is the one that compresses the 

data the most
I.e. to compress a dataset we generate a model 

and then store the model and its mistakes

We need to compute
(a) size of the model, and
(b) space needed to encode the errors

(b) easy: use the informational loss function
(a) need a method to encode the model
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MDL and Bayes’s theorem

 L[T]=“length” of the theory
 L[E|T]=training set encoded wrt the theory
 Description length= L[T] + L[E|T]
 Bayes’s theorem gives a posteriori

probability of a theory given the data:

 Equivalent to:
]Pr[

]Pr[]|Pr[]|Pr[
E

TTEET =

]Pr[log]Pr[log]|Pr[log]|Pr[log ETTEET +−−=−

constant
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MDL and MAP

 MAP stands for maximum a posteriori probability
 Finding the MAP theory corresponds to finding the 

MDL theory
 Difficult bit in applying the MAP principle: 

determining the prior probability Pr[T] of the 
theory

 Corresponds to difficult part in applying the MDL 
principle: coding scheme for the theory

 I.e. if we know a priori that a particular theory is 
more likely we need less bits to encode it
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Discussion of MDL 
principle

 Advantage: makes full use of the training data 
when selecting a model

 Disadvantage 1: appropriate coding scheme/prior 
probabilities for theories are crucial

 Disadvantage 2: no guarantee that the MDL theory 
is the one which minimizes the expected error 

 Note: Occam’s Razor is an axiom!
 Epicurus’s principle of multiple explanations: keep 

all theories that are consistent with the data
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Bayesian model averaging

 Reflects Epicurus’s principle: all theories are used 
for prediction weighted according to P[T|E]

 Let I be a new instance whose class we must 
predict

 Let C be the random variable denoting the class
 Then BMA gives the probability of C given

 I
 training data E
 possible theories Tj

]|Pr[],|[Pr],|Pr[ ETTICEIC jj
j
∑=
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MDL and clustering

 Description length of theory:
bits needed to encode the clusters
 e.g. cluster centers

 Description length of data given theory:
encode cluster membership and position 
relative to cluster
 e.g. distance to cluster center

 Works if coding scheme uses less code space 
for small numbers than for large ones

 With nominal attributes, must communicate 
probability distributions for each cluster
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