2010 2nd semester Wireless Commun. Eng. II

#11: Distributed MIMO Network

Kei Sakaguchi <sakaguchi@mobile.ee.titech.ac.jp> Jan. 19, 2011

Schedule (2nd half)

	Date	Text	Contents	
#7	Dec. 1	A-5	MIMO receiver	
	Dec. 8		No class	
#8	Dec. 15	A-3, 4	MIMO transmitter	
#9	Dec. 22	B-9	Adaptive commun. system	
#10	Jan. 12	A-6, B-14	Multi-user MIMO	
#11	Jan. 19	B-15, 16	Distributed MIMO networks	
#12	Jan. 26		Standardization of MIMO	
	Feb. 2		Examination	

Agenda

Aim of today

Derive throughput performances of wireless networks with MIMO technology

Contents

- Classification of wireless networks
- Wide zone
- Cellular networks
 - Base station cooperation MIMO
- Multi-hop networks
 - Two-way MIMO multi-hop relay

Warming Up

Question

Consider a scenario where speakers A&B are speaking to listeners A&B. Classify the scenario into four cases & give features of each case.

Classification of Wireless Networks

Wireless networks to achieve wide area coverage

	Architecture	System throughput	Drawbacks
Wide zone		Low	High power
Cellular network		High	Cost of base stations & backbone networks
Multi-hop network	BS RS RS	Medium	Cost of relay stations

Wide Zone

Path loss decay

 $|1|^2$

SISO capacity

Path loss model

$$C = \log_2(1+\gamma)$$
 $\gamma = \frac{|h| P_{sz}}{\sigma^2}$

Small zone

$$L_{\rm sz}^{\rm db} = 10\log_{10}\left(E[|h|^2]\right) = -34.5 - 35\log_{10}d$$
$$L_{\rm wz}^{\rm db} = -34.5 - 35\log_{10}d - 35\log_{10}\alpha$$

Required power

Wide zone

αđ

$$P_{\rm wz}^{\rm db} = P_{\rm sz}^{\rm db} + 35\log_{10}\alpha$$

Ex.
$$\alpha = 10$$
 $P_{sz} = 1[W] \longrightarrow P_{wz} = 3[kW]$

Wide Zone with MIMO

MIMO capacity

$$C_{\text{MIMO}} \cong MC_{\text{SISO}} \text{ if } \gamma \gg 1$$

Rank of MIMO channel

$$= \log_2 (1 + \gamma)^M \cong \log_2 (\gamma^M)$$
Wide zone with MIMO

Required power

$$\gamma_{\rm sz}^{\rm dB} = P_{\rm sz}^{\rm dB} - 34.5 - 35 \log_{10} d - 10 \log_{10} \sigma^{2}$$

$$\gamma_{\rm wzMIMO}^{\rm db} = M \left(P_{\rm wz}^{\rm dB} - 34.5 - 35 \log_{10} d - 35 \log_{10} \alpha - 10 \log_{10} \sigma^{2} \right)$$

$$= M \left(\gamma_{\rm sz}^{\rm dB} \right) - 35M \log_{10} \alpha + MP_{+}^{\rm dB} \longleftarrow P_{\rm wz}^{\rm db} = P_{\rm sz}^{\rm db} + P_{+}^{\rm db}$$

$$P_{+}^{\rm dB} = 35 \log_{10} \alpha - \gamma_{\rm sz}^{\rm dB} \left(1 - \frac{1}{M} \right)$$

$$E_{\rm sz} = 10 \qquad M = 2$$

$$P_{\rm sz} = 1[W] \longrightarrow P_{\rm wz} = 317 [W]$$

Jan. 19, 2011 Wireless Commun. Eng II (Distributed MIMO Networks)

Cellular Network

System capacity

Problem of co-channel interference

Co-channel Interference & Frequency Reuse

Signal model

$$y_1 = h_1 s_1 + h_2 s_2 + n_1$$

Single frequency network

$$C_{\rm S} = \log_2 \left(1 + \frac{P_1 |h_1|^2}{P_2 |h_2|^2 + \sigma^2} \right)$$

Dual frequency network

Frequency reuse factor = 2

Loss of channelization

Cellular Network with MIMO

Signal model

$$\mathbf{y}_1 = \mathbf{H}_1(f_1)\mathbf{s}_1 + \mathbf{n}_1$$
$$\mathbf{y}_2 = \mathbf{H}_2(f_2)\mathbf{s}_2 + \mathbf{n}_2$$

MIMO capacity

$$C_{1} = \frac{1}{2} \log_{2} \det \left(\mathbf{I} + \frac{P \mathbf{H}_{1} \mathbf{H}_{1}^{H}}{M_{BS} \sigma^{2}} \right)$$
Number of BS antennas

Ideal SISO SFN = MIMO DFN

Jan. 19, 2011

Eigenmode Analysis of Cellular MIMO

Eigenmode decomposition

$$\mathbf{H} = \mathbf{U} \Lambda \mathbf{V}^{H}$$
$$\Lambda = \operatorname{diag}[\sqrt{\lambda_{1}}, \cdots, \sqrt{\lambda_{M}}]$$

MIMO capacity

2nd EM vanishes at cell edge

Wireless Commun. Eng II (Distributed MIMO Networks)

Cellular Network with Terminal Adaptive Array

Signal model

 $\mathbf{y}_1 = \mathbf{h}_1 s_1 + \mathbf{h}_2 s_2 + \mathbf{n}_1$

Interference from BS2

Terminal adaptive array

$$\mathbf{w}_1^{\mathrm{r}} = (\mathbf{h}_2)^{\perp}, \quad \mathbf{w}_2^{\mathrm{r}} = (\mathbf{h}_1)^{\perp}$$

Interference cancellation

$$\widetilde{y}_1 = \left(\mathbf{w}_1^{\mathrm{r}}\right)\mathbf{y}_1 = h_1^{\mathrm{e}}s_1 + \widetilde{n}_1$$

Almost same with MIMO DFN

Wireless Commun. Eng II (Distributed MIMO Networks)

Cellular Network with Base Station Cooperation MIMO

Signal model

Eigenmode Analysis of Base Station Cooperation MIMO

Jan. 19, 2011

Hybrid Normal MIMO & Base Station Cooperation MIMO

Jan. 19, 2011

Multi-hop Relay Network

End-to-end capacity

 $Y_{\rm mh} \cong (N_{\rm RS} + 1)Y_{\rm sz}$

Loss of half duplex Required cost Half duplex multi-hop network

Problem of co-channel interference

Number of relay stations

Technology in multi-hop network

1-dimensional 6-node wireless multi-hop network

Multi-hop Relay with Frequency Reuse

Single channel multi-hop network

Interference from adjacent node is severe

Multi channel multi-hop network

Channelization loss of 1/2

End-to-end capacity

End-to-end capacity for decode, spool, and forward network

$$C_{i}^{\text{av}} = E \left[\log_{2} \left[1 + \frac{P_{i}g_{(i+1)i}}{\sum_{j \neq i} P_{j}g_{(i+1)j} + \sigma^{2}} \right] \right]$$

 $C_i^{\rm av} = \min\left[\frac{1}{L}C_i^{\rm av}\right]$

E2E throughput performance

• Negligible throughput of single channel multi-hop network due to strong interference from adjacent node

• Introduction of multi-channel strategy improves the throughput performance

Wireless Commun. Eng II (Distributed MIMO Networks)

Multi-hop Relay with MIMO

- Increase spectral efficiency by spatial multiplexing within a link
- Recover the disadvantage of multi-channel networks

Multi-hop Relay with Adaptive Array

- Achieve transmit & receive interference cancellation and diversity
- Realize single channel multi-hop network

E2E throughput performance

• Throughput performance of link-by-link MIMO scales linearly with respect to the number of antennas per node

• Introduction of adaptive antenna compensates the channelization loss

Two-way MIMO Relay (Two-hop)

- Two-way streams (forward & backward) are multiplexed in a relay network
- Recover the loss of half duplex by two-way multiplexing

Two-way MIMO Multi-hop Relay

- Two-way transmission by spatial multiplexing of forward & backward streams
- Network oriented interference cancellation by a combination of transmit & receive weights
- Simultaneous realization of diversity, transmit & receive interference cancellation, and spatial multiplexing

Jan. 19, 2011

E2E throughput performance

- Throughput performance of two-way MIMO multi-hop network is the best
- 2-times improvement due to realization of single channel network and further 2-times improvement due to two-way streams multiplexing

Multi-flow Multi-hop Relay Network

Network capacity

 $C_{\text{mfmh}} \cong N_{\text{flow}} C_{\text{twmh}}$ several fl Number of flows E2E capacity of two-way multi-hop network

Required cost

$$Y_{\rm mfmh} \cong N_{\rm flow} (N_{\rm RS} + 1) Y_{\rm sz}$$

Co-existence of several flows of multi-hop network

Power reduced multi-hop networks

Effective for local networks

Summary

- Distributed MIMO networks
 - Wireless networks to achieve wide area coverage
 - Wide zone, cellular networks, multi-hop networks
 - Link-by-link application of single user MIMO is not efficient
 - Base station cooperation MIMO cellular network
 - Cooperative MIMO to achieve better performance at cell edge
 - Two-way MIMO multi-hop relay
 - Network MIMO to achieve single channel two-way relay

Application of MIMO technology to commercial products

Standardization of MIMO in IEEE & 3GPP