Schedule (2nd half)

2010 2nd semester Wireless Commun. Eng. II

#9: Adaptive MIMO Communication

Kei Sakaguchi sakaguchi@mobile.ee.titech.ac.jp Dec. 22, 2010

	Date	Text	Contents
#7	Dec. 1	A-5	MIMO receiver
	Dec. 8		No class
#8	Dec. 15	A-3, 4	MIMO transmitter
#9	Dec. 22	B-9	Adaptive commun. system
#10	Jan. 12	A-6, B-14	Multi-user MIMO
#11	Jan. 29	B-15, 16	Distributed MIMO networks
#12	Jan. 26		Standardization of MIMO
	Feb. 2		Examination

Dec. 22, 2010 Wireless Commun. Eng II (Adaptive MIMO Communication)

2

4

Agenda

Aim of today

Derive throughput performances of adaptive MIMO communication systems

Contents

- Architecture of adaptive MIMO communication
- Adaptive Modulation Coding (AMC)
- MIMO Equal Adaptation (EA)
- MIMO Per Antenna Adaptation (PAA)
- MIMO EigenMode Adaptation (EMA)
- Measurement experiment

Dec. 22, 2010 Wireless Commun. Eng II (Adaptive MIMO Communication)

Question

Given a 4x4 MIMO system, draw multiplexing gain $g_{\rm m}$ vs. diversity gain $\,g_{\rm d}$ by changing the number of streams m .

(In the case when the diversity gain of the system is not unique, pick up minimal diversity gain as representative value.)

Adaptive MIMO Commun. Architecture

- MIMO combined with OFDM and Adaptive Modulation Coding (AMC)
- Different adaptive algorithms for different Tx and Rx MIMO schemes
- Tradeoff between feedback complexity and system performance
- → Modulation level (MLI), antenna selection (ASI), channel state information (CSI) feedback

Adaptive Modulation

Instantaneous SNR

Classification of Adaptive MIMO

	Multiplexing	Diversity	Complexity
MIMO EA	Full	Receive	Low
	Adaptive	Full (Selective Tx)	Moderate
	Adaptive	Full	High

Dec. 22, 2010

Wireless Commun. Eng II (Adaptive MIMO Communication)

Adaptive Modulation in Fading

$$f(\gamma) = \frac{1}{\overline{\gamma}} \exp\left(-\frac{\gamma}{\overline{\gamma}}\right) \quad \overline{\gamma} = \mathrm{E}\left[\frac{P|h(t)|^2}{\sigma^2}\right]$$

 $\overline{TP}(\overline{\gamma}, M^{\operatorname{ary}}) = \int f(\gamma) TP(\gamma, M^{\operatorname{ary}}) d\gamma$

Adaptive modulation

Average throughput

$$\overline{TP}(\overline{\gamma}) = \int_0^{\gamma_1} f(\gamma) TP(\gamma, 2) d\gamma + \cdots$$
$$+ \int_{\gamma_3}^{\infty} f(\gamma) TP(\gamma, 64) d\gamma$$

$$\gamma_1 = 10^{9.5/10}$$
 $\gamma_2 = 10^{16/10}$ $\gamma_3 = 10^{22.5/10}$

QPSK 16QAM

Throughput of different modulation

Table for adaptive modulation

Inst. SNR	Modulation
- 9.5dB	BSPK
9.5dB – 16dB	QPSK
16dB – 22.5dB	16QAM
22.5dB	64QAM

6

Adaptive Modulation in Rayleigh Fading

• Adaptive modulation achieves better performance than fixed modulation

Performance of Coding

Convolutional Coding & Puncture

Convolutional coding

Puncture pattern

9

11

R=2/3	R=3/4	R=4/5	R=5/6
P d _{free}	P d _{free}	P d _{free}	P d _{free}
$\begin{array}{ccc} 10 \\ 11 \end{array} 6 \end{array}$	110 101 5	$ \begin{array}{c} 1111 \\ 1000 \end{array} 4 $	$\begin{array}{c}11010\\10101\end{array}4$
Dec. 22, 2010	Wireless Commun. Eng	II (Adaptive MIMO Commur	nication) 10

Performance of Coding

• Coding improves the variety of adaptive control

AMC in Rayleigh Fading

• Coding improves the performance of adaptive modulation

Adaptive Algorithm for MIMO-EA

13

MIMO Equal Adaptation (EA)

- Simple adaptive modulation based on estimated BER of combined signal
- Simple feedback of modulation level information (MLI)
- Different diversity gains for different MIMO detection schemes

MMSE: $M_r - M_t - 1$ VBLAST: $M_r - M_t - stage$ QRM-MLD: $\leq M_r$

Throughput Performance of MIMO-EA

- Full multiplexing gain is achieved at extremely high SNR region
- VBLAST & QRM-MLD improve the performance owing to the diversity gain

MIMO Per Antenna Adaptation (PAA)

- Per-antenna adaptive modulation based on estimated SINR of each stream
- Moderate feedback of MLI and antenna selection information (ASI)
- Transmit diversity due to m active antenna selection from $M_{\rm t}$ antennas

Adaptive Algorithm for MIMO-PAA

Throughput Performance of MIMO-PAA

• MIMO-PAA achieves better performance at low SNR region even with MMSE detection

Antenna Selection Probability

- Full diversity gain at low SNR region
- Full multiplexing at high SNR region

MIMO EigenMode Adaptation (EMA)

Per-stream adaptive modulation based on estimated SNR of each eigenmode
Complicated feedback of MLI + channel state information (CSI) for SVD-MIMO

Throughput Performance of MIMO-EMA

• SVD-MIMO (EMA) achieves best performance at reasonable SNR region

Adaptive Algorithm for MIMO-EMA

Adaptive algorithm _ MLIs

Dec. 22, 2010

Wireless Commun. Eng II (Adaptive MIMO Communication)

22

Bit & Power Allocation Probability

- Full diversity gain at low SNR region by using 1st eigenmode only
- Full multiplexing gain at high SNR region by using all eigenmodes
- The performance at high SNR region will be improved by employing higher modulation order

Comparison of Adaptive MIMO Algorithm

	Diversity	Multiplexing	Feedback	Performance
MMSE-EA	$\left(M_{\rm r}-M_{\rm t}+1\right)$	M_{t}	MLI	>ZF-EA
QRMLD-EA	$M_{ m r}$	$M_{\mathfrak{t}}$	MLI	>MMSE-EA
MMSE-PAA	$ \binom{M_{\rm t}-n+1}{M_{\rm r}-m+1} \times $	т	ASI, MLI $ imes M_{\mathrm{t}}$	>QRMLD-EA
SVD-MIMO	$ \begin{pmatrix} M_{\rm t} - n + 1 \end{pmatrix} \times \\ \begin{pmatrix} M_{\rm r} - n + 1 \end{pmatrix} $	т	CSI, MLI $ imes M_{\mathrm{t}}$	>MMSE-PAA

MLI: Modulation Level Information ASI: Antenna Selection Information

25

CSI: Channel State Information

Dec. 22, 2010 Wireless Commun. Eng II (Adaptive MIMO Communication)

Channel Measurement

Measurement condition		
MIMO configuration	4(Tx) x 4(Rx)	
Array configuration	Half a wavelength spacing ULA	
Center frequency	5.06 GHz	
# of measurement points	55,738 (2cm step)	

Dec. 22, 2010 Wireless Commun. Eng II (nuapuve ivitivio communication)

Measurement Experiment

MIMO configuration	4 (Tx) x 4 (Rx)
MIMO channel	Measured data (IID for simulation)
MIMO transmitter	Spatial multiplexing, SVD-MIMO
MIMO receiver	MMSE, VBLAST, QRM-MLD
MIMO adaptation	EA, PAA, EMA
Modulation order	BPSK, QPSK, 16QAM, 64QAM
Frame configuration	IEEE802.11a based w/o coding
Packet length	480 bits
Channel estimation	Perfect
Transmit power	0 dBm

Dec. 22, 2010 Wireless Commun. Eng II (Adaptive MIMO Communication)

26

SNR / Spatial Correlation Distribution

- High SNR in living room due to strong LOS component
- High spatial correlation even in NLOS environment
 - \longrightarrow Wooden house is not a rich scattering environment

SNR distribution

Spatial correlation distribution

SISO vs. MIMO-EA (MMSE)

- Higher throughput of MMSE (MIMO-EA) in living room with high SNR
- Throughput degrades in low SNR region due to bit over loading

VBLAST vs. QRM-MLD

- Further performance improvement due to full receive diversity gain
- Slight performance degradation due to SNR penalty at low SNR

31

MMSE vs. VBLAST

- Performance improvement by VBLAST due to diversity gain
- Diversity function improves robustness against spatial correlation

Distance vs. Throughput on MIMO-EA

- Performance of MMSE is not worth employing in real environment
- VBLAST and QRM-MLD improve performance by receive diversity gain
- QRM-MLD achieves full multiplexing gain at high SNR region

QRM-MLD vs. MIMO-PAA (MMSE)

- MMSE-PAA improves performance at low SNR region drastically
- Transmit diversity is effective to improve area coverage

Distance vs. Throughput

- Full multiplexing gain of QRM-MLD is effective at high SNR region
- Full diversity gain of SVD-MIMO is effective at low SNR region

MMSE-PAA vs. MIMO-EMA (SVD-MIMO)

- Further performance improvement due to full diversity gain of SVD-MIMO
- Performance at high SNR region will be improved by employing higher modulation order

SNR vs. Throughput

- Performance of SVD-MIMO is best at reasonable SNR up to 30dB
- MMSE-PAA works effectively with reasonable feedback information

36

Summary

- Adaptive MIMO communication
 - Adaptive modulation coding based on instantaneous SINR
 - Active channel control based on feedback information
 - Tradeoff between feedback complexity and system performance

Complexity:MIMO-EA < MIMO-PAA < MIMO-EMA</th>Performance:MIMO-EA < MIMO-PAA < MIMO-EMA</td>

Application of adaptive MIMO communication system to general scenario

Multi-User MIMO Communication

Dec. 22, 2010 Wireless Commun. Eng II (Adaptive MIMO Communication) 37