2010 2nd semester Wireless Commun. Eng. II

#2: Fundamentals of Wireless Communication

Kei Sakaguchi <sakaguchi@mobile.ee.titech.ac.jp> Oct. 13, 2010

Schedule (1st half)

	Date	Text	Contents
#1	Oct. 6	A-1, B-1	Introduction
#2	Oct. 13	B-5, B-6	Fundamentals of wireless commun.
#3	Oct. 20	B-12	OFDM for wireless broadband
#4	Nov. 10	B-7	Array signal processing
#5	Nov. 17	A-3, B-10	MIMO channel capacity
#6	Nov. 24	B-2, 3	Spatial channel model

Agenda

Aim of today

Derive throughput performance of basic SISO system

Contents

- Narrow band system
 - Channel capacity
 - Path loss & multi-path fading
 - QAM signaling & throughput performance

Warming Up

Question

Given a transmission system with BPSK modulation whose transmission rate is 1 bit per *T* seconds. Calculate spectrum efficiency *C* [bit/s/Hz] of this system.

Spectrum efficiency

Nyquist filter $\int 1 - 0 < \int dt$

 $G(f) = \begin{cases} 1, & 0 \le \left| f \right|^2 \le \frac{1}{2} \\ 0, & \text{otherwise} \end{cases} \quad \Box >$

Bandwidth

$$B = \frac{1}{T}$$

Spectrum efficiency

Narrow Band System

Received signal model

Channel response

Transmit signal

Propagation channel

 $h(t) \approx \text{const}$

over unit signal packet

Transmit power

$$P = \mathrm{E}[\left|s(t)\right|^2]$$

Noise power

$$\sigma^2 = \mathrm{E}[|n(t)|^2] = N_0 B$$

Channel Capacity

Channel capacity of real number system

$$C_{\rm R} = \frac{1}{T} \max_{\text{E}[s^2] \le P} I(S;Y) = \frac{1}{2T} \log_2 \left(1 + \frac{P|h|^2}{\sigma^2} \right) = \frac{B}{2} \log_2 \left(1 + \frac{P|h|^2}{\sigma^2} \right)$$

.

Mutual information

$$I(S;Y) = H(Y) - H(Y | S) = H(Y) - H(S + N | S) = H(Y) - H(N)$$

Entropy of Gaussian signal

$$H(N) = \frac{1}{2} \log_2 2\pi e \sigma^2$$
 $H(Y) \le \frac{1}{2} \log_2 2\pi e (|h|^2 P + \sigma^2)$

Channel capacity of complex number system

$$C_{\rm C} = 2 \times \frac{B}{2} \log_2 \left(1 + \frac{\frac{P}{2} |h|^2}{\sigma^2/2} \right) = B \log_2 \left(1 + \frac{P|h|^2}{\sigma^2} \right) \text{ [bits/s]}$$

Achievable Data Rate of SISO

Oct. 13, 2010

Wireless Communication Channel

Wireless is vulnerable!

#1: Path loss due to distance

→ Lower average SNR

#2: Multi-path fading

→ Deep SNR dip

#3: Time dispersive fading

→ Inter symbol interference

#4: Multi-access interference
→ Co-channel interference

Modern Wireless Transceiver

Issue #1: Path loss

- Channel gain decreases in accordance with distance between Tx & Rx
- It results in lower SNR, higher BER, and lower throughput

Commun. distance

Receive SNR

Transmit power = 40dBm, Noise power = -100dBm, Frequency = 3.5GHz

QAM Modulation

QAM modulation

Gray coding

Adjacent symbols differ by one binary digit

$$s_{\rm R} = \operatorname{gray}_{\sqrt{M_{\rm ary}}}(m_{\rm R})$$
 Ex. $\operatorname{gray}_8(m_{\rm R})$ $\xrightarrow{000\ 001\ 011\ 010\ 110\ 111\ 101\ 100}_{0\ 1\ 3\ 2\ 6\ 7\ 5\ 4}$

BER on QPSK Signaling

Channel estimation

$$\hat{h} = \int \frac{y_{\rm T}(t)}{s_{\rm T}(t)} \mathrm{d}t$$

Coherent detection

$$\hat{s}(t) = \frac{y(t)}{\hat{h}} = s(t) + \frac{n(t)}{\hat{h}}$$

Bit error rate (BER)

$$P_{eb}(\gamma) = \frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{\gamma}{2}}\right) \qquad \gamma = \frac{P\left|\hat{h}\right|^2}{\sigma^2}$$
$$\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^\infty \exp(-z^2) dz$$

BER Performance

Throughput Performance

Frame structure

Issue #2: Multi-path fading

- Instantaneous SNR variation due to multi-path fading
- Deep SNR dip results in serious BER performance

Multi-path Rayleigh Fading

10 -30

-20

-10

power [dB]

0

10

 $h_{\rm I}$

 $h_{\rm R}$

Multi-path channel $h(t) = \sum_{l} \beta_{l} \exp\left(j2\pi \frac{vt}{\lambda} \cos\theta\right)$ Central limit theorem $f(h_{\rm R}) = f(h_{\rm I}) = \frac{1}{\sqrt{2\pi\alpha}} \exp\left(-\frac{x^2}{2\alpha^2}\right)$ Cumulative distribution $\alpha^{2} = E[|h_{R}|^{2}] = E[|h_{I}|^{2}]$ 10^{0} Cumulative distribution PDF of channel power or SNR 10^{-10} 10^{-2}

BER Performance in Fading Environment

Instantaneous BER

$$P_{\rm eb}(\gamma) = \frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{\gamma}{2}}\right) \quad \gamma = \frac{P|h(t)|^2}{\sigma^2}$$

PDF of SNR

$$f(\gamma) = \frac{1}{\overline{\gamma}} \exp\left(-\frac{\gamma}{\overline{\gamma}}\right) \quad \overline{\gamma} = \mathrm{E}\left[\frac{P|h(t)|^2}{\sigma^2}\right]$$

Average BER & TP

$$\overline{P}_{eb}(\overline{\gamma}) = \int f(\gamma) P_{eb}(\gamma) d\gamma = \frac{1}{2} \left(1 - \sqrt{\frac{\overline{\gamma}}{2 + \overline{\gamma}}} \right)$$
$$\overline{TP}(\overline{\gamma}) = \int f(\gamma) TP(\gamma) d\gamma$$

BER performance

BER & Throughput Performance

Summary

- In narrow system
 - Channel capacity is achieved by Gaussian signaling
 - Path loss & multi-path fading are major issues in wireless communication channel
 - QAM for variable rate modulation with limited constellation
 - Derive throughput performance of QAM signal via BER calculation
 - Throughput performance degrades severely due to multi-path fading

For wideband system

OFDM for wireless broadband