Assignment 2 (June 29, Submit in two weeks) Following Example 9.5 and 9.6, compute response displacement, velocity and absolute acceleration at the mass 1 of a 3 DOFS structure shown.

1) Structural properties and assumptions

- Assume that

$$
\begin{aligned}
m & =150 \mathrm{kN} / \mathrm{g}=150 / 9.8 \\
\xi_{r} & =0.05 \\
k_{1} & =k \\
k_{2} & =2 k \\
k_{3} & =3 k \\
k & =3050.9 \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

- Mass matrix

$$
[M]=\left[\begin{array}{ccc}
m & 0 & 0 \\
0 & m & 0 \\
0 & 0 & m
\end{array}\right]
$$

-Stiffness matrix

$$
[K]=\left[\begin{array}{ccc}
k_{1} & -k_{1} & 0 \\
-k_{1} & k_{1}+k_{2} & -k_{2} \\
0 & -k_{2} & k_{2}+k_{3}
\end{array}\right]
$$

- The characteristic equation is

$$
\begin{array}{ccc}
k_{1}-\omega^{2} m & -k_{1} & 0 \\
-k_{1} & k_{1}+k_{2}-\omega^{2} m & -k_{2} \\
0 & -k_{2} & k_{2}+k_{3}-\omega^{2} m \\
k-\omega^{2} 150 / 9.8 & -k & 0 \\
-k & 3 k-\omega^{2} 150 / 9.8 & -2 k \\
0 & -2 k & 5 k-\omega^{2} 150 / 9.8
\end{array}=0
$$

- Natural periods and mode shapes

$$
\omega_{1}=9.10 \mathrm{rad} / \mathrm{s} \quad T_{1}=0.690 \mathrm{~s}
$$

$$
\omega_{2}=21.4 \mathrm{rad} / \mathrm{s} \quad T_{2}=0.294 \mathrm{~s}
$$

$$
\omega_{3}=35.4 \mathrm{rad} / \mathrm{s} \quad T_{3}=0.177 \mathrm{~s}
$$

$$
\phi_{1}=\left\{\begin{array}{c}
1.00 \\
0.584 \\
0.255
\end{array}\right\} \quad \phi_{2}=\left\{\begin{array}{c}
-0.773 \\
1.00 \\
0.739
\end{array}\right\} \quad \phi_{3}=\left\{\begin{array}{c}
0.122 \\
-0.645 \\
1.00
\end{array}\right\}
$$

- Modal matrix

$$
[\Phi]=\left[\begin{array}{ccc}
1.00 & -0.773 & 0.122 \\
0.584 & 1.00 & -0.645 \\
0.255 & 0.739 & 1.00
\end{array}\right]
$$

2) Compute response at mass 1 based on the following steps.

- Compute mode participation factors β_{1}, β_{2} and β_{3}
- Compute response $\tilde{q}_{r}(t), \dot{q}_{r}(t)$ and $\tilde{q}_{r}(t)$
- Compute the generalized coordinate $q_{r}(t), \dot{q}_{r}(t)$ and $\ddot{q}_{r}(t)$
- Compute response at mass 1
- For acceleration, compute the absolute acceleration in stead of the relative acceleration

