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CHAPTER 9 FORMULATION OF THE 
MULTI-DEGREE-OF-FREEDOM 
EQUATIONS OF MOTION (多自由度系の運
動方程式)

“Dynamics of Structures” by Sheldon 
Cherry and Note by Kawashima are also 
used. 
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１） Flexibility Matrix (フレキシビリティー行列)

Discrete a structure into a n-degree of freedom 
system.

i j

ijf

Unit load

9．１ Stiffness Matrix and Flexibility Matrix

ijf = deflection of coordinate i due to unit load 
applied to coordinate j (接点ｊに単位の荷重を
作用させた場合に接点ｉに生じるたわみ)

ijf is called flexibility influence coefficient (フレキシ
ビリティ影響係数), or simply, coefficient of 
flexibility matrix (フレキシビリティマトリックスの係数).
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Deflection at point i due to any combination of 
loads       may be expressed asjF

i
k

kikFf

kF

i j

jijFf

jF

niniii FfFfFfu  2211 (9.1)
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nnFfFfFfu 12121111 

Hence

nnFfFfFfu 22221212 

nnnnnn FfFfFfu  2211




This can be written in the matrix form as
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(9.2)

(9.3)
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or,

    PFu 

Displacement vector変位ベクトル

Flexibility matrix フレキシビリティマトリックス

Load vector荷重ベクトル

(9.4)
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ijk

Unit deflection

i j

ijk jijuk

i

kikuk

ku

k

i j

ju

2) Stiffness Matrix (剛性行列)

ijk =restoring force (復元力) corresponding to 
coordinate i due to a unit displacement of 
coordinate j (節点（座標）ｊに単位の変位が生じたと
きに接点（座標）ｉに生じる力)

niniii ukukukp  2211

(9.5)

 Load (荷重)(=restoring force 
(復元力)) at point i may be 
written as
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This can be written in the matrix form as
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(9.7)

nnukukukp 12121111 

nnukukukp 22221212 


niniii ukukukp  2211



(9.6)

nnnnnn ukukukp  2211
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External force 
(=restoring 
force) vector

Displacement vector

剛性行列
Stiffness Matrix

or,

    uKP  (9.8)
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３） Relation between Stiffness Matrix and 
Flexibility matrix (剛性行列とフレキシビリティ行列の
関係)

  1K

             uuIuKKPK 
 11

Comparing this with Eq. (9.4), it is evident that

    1 KF

    1 FK

Hence,

 Pre-multiplying to both sides of Eq. (9.8),

(9.9a)

(9.9b)

       IKFFK  (9.10)

    uKP  (9.8)

    PFu  (9.4)
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４） Maxwell and Betti’s Reciprocal Theorem 
(マクスウェルとベッティの相反作用の原理)

i j

ijf

Unit load

i j

jif

Unit Load

jiij ff 

Unit Displacement

i j

ijk

Unit Displacement

i j

jik

jiij kk 

Both stiffness matrix and flexibility matrix are 
symmetric.
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9.2 Equations of Motion for Multi-
Degree-of-Freedom System without 
Damping (多自由度系（非減衰系）の運動
方程式)

 It is not realistic to idealize a complex structure 
by a single-degree-of-freedom system. In such a 
case, a complex structure is generally idealized by 
a multi-degree-of-freedom system (MDOF system).

Equations of motion for MDOF system is 
developed in this section. 
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１） Equations of Motion of a MDOF System 
based on d’Alembert’s Principle (ダランベールの
法則に基づく運動方程式)

 Idealize a structure by a 
discrete MDOF system.

Assume that each lumped mass 
(凝縮マス) has a single degree of 
freedom in the lateral direction 
(水平方向).

As we studied in “2.4 Influence 
of Support Excitation,” consider a 
MDOF system subjected to a 
ground motion           at its base 
and lateral external force (水平方
向外力)          .

)(tug

)(tpi

Fig. 9.1(a)
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riu
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)(tum ii 
)(tpi

i
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n

1

Fig. 9.1 (b)

 Based on d’Alembert’s Principle, the equilibrium of 
point i may be written from Eq. (9.6) as

niniii ukukukp  2211 (9.6)

rninririiii ukukukumtp  2211)( 

 The above equation can be 
extended to n-set of 
equations, and using Eq. (9.7), 
one obtains

Note here that because the 
restoring force is proportional 
to the relative displacement, 
subscript “r” is attached in the 
right hand side.
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(9.11)

       ruKuMP   (9.12)

Hence,
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 Expanding Eq. (2.15), we separate the absolute 
displacement at point , ui, into the relative 
displacement uri and ground displacement ug as 

(a)

riu

・

)(tum ii 
)(tPi i

・

n

1

Fig. 9.1
(b)

grii uuu  (9.13)

)()()( tvtvtv g
t  (2.15)
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     Iuuu gr 

          rgr uKIMuuMP  

(9.14a)

     Iuuu gr   (9.14b)

 Substitution of Eq. (9.14) into Eq. (9.12) leads to

 Hence, the equations of motion for a MDOF 
system can be written

          IMuPuKuM grr   (9.15)

       ruKuMP   (9.12)

grii uuu  (9.13)

 By expressing Eq. (9.13) in the matrix form, one 
obtains that
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 For simplicity of notation, the subscript “r” which 
represents the response “relative” to the base (基礎
に対する相対応答) is eliminated hereinafter. 
Hence, Eq. (9.16) is written as

          IMuPuKuM g  (9.16)

          IMuPuKuM grr   (9.15)
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2) Natural Frequencies and Natural Mode 
Shapes (固有振動数と固有振動モード)

The equations of motion for free vibration is 
obtained by assuming that  the external force and 
the foundation (ground) displacement of the right 
hand side of Eq. (9.16) are zero

       0 uKuM  (9.17)

 Assume the displacement and acceleration vectors 
as

    tAu sin

     utAu 22 sin  
(9.18)

          IMuPuKuM g  (9.16)

in which      represents an unknown amplitude 
vector with displacement amplitudes of the mass 
points, and     is an unknown angular frequency. 

 A
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       02  AKAM

 Substituting Eq. (9.18) into Eq. (9.17) leads to

       0 uKuM  (9.17)

    tAu sin

     utAu 22 sin  
(9.18)

Thus, rearranging, we have

       02  AMK  (9.19)
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 For illustrative propose, it may be easy to represent 
Eq. (9.19) in the form of a set of equations

       02  AMK  (9.19)

  01212111
2

11  nnAkAkAmk 

  02222
2

22121  nnAkAmkAk 







  02
2211  nnnnnnn AmkAkAk 

(9.20)
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   0A For having a non trivial solution,              , it is 
necessary that  

    02  MK  (9.21)

i

 Eq. (9.21) is called characteristic equation (特性方
程式), or eigen value equation (固有値解析方程式). By 
solving Eq. (9.21), one obtains n-set of eigen values, 
or angular natural frequencies       (n組の固有値すなわ
ち角固有振動数). 

 In practice, natural frequencies       (the i-th 
natural frequency, 第i次固有振動数(Hz)) or natural 
periods      (the i-th natural period, 第i次固有周期（s）)
are more often used which are defined as

iT

if





2

1 i

i
i

T
f 

i
iT



2
 (9.22)

(9.23)
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 Once n-set of  (1, 2, 3, ….., n) are known, the 
associated eigen vectors ,      ,       , ….,        
can be found by substituting      into Eq. (9.19).  

 However, since the right hand sides of Eq. (9.19) 
are zero, only the ratios or relative values of the 
elements of the eigen vector        can be found.

While the eigen value problem does not fix the 
absolute amplitude of the eigen vector       , the 
mode shape is uniquely defined in terms of the 
amplitude ratios. 

It is generally the practice to normalize each mode 
vector by arbitrarily assigning a value of unity to the 
component of greatest value.

 1A  2A  3A  nA
i

       02  AMK  (9.19)

 iA

 iA
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 The elements of        can be normalized by an 
arbitral component, and if it is A1i, the        vector 
may be written

 iA
 iA

(9.24)

 The       vector which is associated with      is 
generally called the i-th mode shape (ｉ次固有振動モー
ド、あるいは、i次振動モード).

 i i
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 The analysis of Eq. (9.19) determines as many 
natural frequencies and independent mode shapes as 
there are degrees of freedom of the structure, which 
corresponds to the number of lumped masses 
assumed in the MDOF system shown in Fig. 9.1.

 The frequency is generally counted from the lowest 
value as the 1st, the 2nd, …., the n-th natural 
frequency (1次固有振動数、2次固有振動数、..、ｎ次固有振動
数) and its associated mode shapes  are called the 1st 
mode shape, the 2nd mode shape, ….., the n-th mode 
shape (1次固有振動モード、2次固有振動モード、..、ｎ次固有振
動モード). 

The 1st natural frequency and mode shape are often 
called the fundamental frequency （基本固有振動数） and 
the fundamental natural mode shape (基本固有振動モー
ド).

       02  AMK  (9.19)



26

・

i

・

n

1 11

1i

1n

1st mode shape

・

i

・

n

1 12

2i

2n

2nd mode shape

 Example of mode shapes: refer to Example 1 on p.34 
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2nd mode

 By collecting n-sets natural 
mode shape vector                  
we obtain

 i ),,2,1( ni 

(9.25)

 in Eq. (9.25) is called 
the modal matrix (モ-ダルマトリッ
クス).

 



28

 As shown in Fig. (9.22), the natural period (the i-
th natural period),                  , is generally used in 
practice.

The lowest natural period      is often called the 
fundamental natural period (基本固有周期).
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 In a similar way, by collecting n-sets of the 
natural frequency, we have

(9.26)

 in Eq. (9.26) is called the frequency matrix 
(振動数マトリックス).
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3 Orthogonality Condition of Mode Shapes 
(振動モードの直交性)

       02  AMK  (9.19)

 From Eq. (9.19), we have the following relation for 
the i-th mode.

     iii KM  2
(9.27)

 Because Eq. (9.27) is valid for any two sets of mode, 
Eq. (9.27) can be written for the r-th and the s-th 
modes

     rrr KM  2

     sss KM  2

(9.28a)

(9.28b)
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       TT
s

TT
ss KM  2

         r
T

sr
T

sr KM  2

           r
TT

sr
TT

ss KM  2

 Transposing Eq. (9.28b) leads to

(9.29)

 Pre-multiplying          to Eq. (9.28a), one obtains  Ts

(9.30a)

 Post-multiplying         to Eq. (9.29) leads to r

(9.30b)

     rrr KM  2

     sss KM  2

(9.28a)

(9.28b)

 Because both        and        are symmetric, M  K

   MM T     KK T  (9.31)
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     0)( 22  r
T

ssr M 

sr  

     0r
T

s M 

     0r
T

s K 

 Subtracting Eq. (9.30b) from Eq. (9.30a) taking 
account of Eq. (9.32) leads to

         r
T

sr
T

sr KM  2

           r
TT

sr
TT

ss KM  2

(9.30a)

(9.30b)

   MM T     KK T  (9.31)

(9.32)

 Hence, if              , we obtain

(9.33a)

and from Eq. (9.30b), we also have  

(9.33b)

 Note that two modes having the same frequency 
(r=s) are not necessarily orthogonal.
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Orthogonality relation of two vectors
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 If two vectors
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and are orthogonal 
where          is called weighting 
coefficient （重み係数）.
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 a  bsatisfy the following condition,      and     vectors 
are orthogonal.
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Example 1: Analyze the natural frequencies and 
natural mode shapes of a 2DOF system
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mtfk /20001 
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 Based on Eq. (9.20) or Eq. (9.21),
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    02  MK  (9.21)

1

2
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196
2

1 

1176
2

2 

srad /0.141 

srad /3.342 

sT 449.0
2

1
1 





sT 183.0
2

2
2 





 Solving the characteristic equations, we have

 Hence

1

2
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 Mode shapes (amplitude ratios) can be obtained by 
substituting the computed natural frequency into the 
first equation
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 Thus the same 1st mode shape is obtained as
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For 2

From the first equation
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tfm 502 
mtfk /20001 

mtfk /30002 
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 Thus, the 1st and the 2nd mode shapes (refer to 
Eq.(9.24)) are
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 The modal matrix by Eq. (9.25) is written as
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 Note that the i-th mode shape merely represents 
the amplitude ratios among the n-set of values. 
Therefore, the first mode can be expressed in 
various form as
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 We can know that two modes satisfy the 
orthogonal condition as
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Example 2: Analyze the natural frequencies and 
natural mode shapes of a 2DOFS which has the 
same masses and k1 stiffness with those of 
Example 1, but k2 stiffness of 4000tf/m. 
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 Based on Eq. (9.20) or Eq. (9.21),
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 Mode shapes (amplitude ratios) can be obtained by 
substituting the computed natural frequencies
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Hence,
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 Check of orthogonal condition
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