RN -

Structural Dynamics
EEENF
(6)

Kazuhiko Kawashima
Department of Civil Engineering
Tokyo institute of Technology

LR RFRFE:

E

1 -

LR FE

JI

B2

_*—

LFRIN




CHAPTER 9 FORMULATION OF THE
MULTI-DEGREE-OF-FREEDOM
EQUATIONS OF MOTION (ZBH.
B751E30)
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“Dynamics of Structures” by Sheldon

Cherry and Note by Kawashima are also
used.



9. 1 Stiffness Matrix and Flexibility Matrix
1) Flexibility Matrix (ZUF*2EYT4—1751)
®Discrete a structure into a n-degree of freedom
system.

fij = deflection of coordinate i due to unit load
applied to coordinate j (R B DORES
ERCSEGSICERICELST-DHA)

Unit load

fij is called flexibility influence coefficient (ZLF<
ET18224% %), or simply, coefficient of 5
flexibility matrix (ZLFLEYTATR) VI RADEZRE).



®Deflection at point i due to any combination of
loads Fj may be expressed as

Ui = fi1|:_|_-l— fize-I- ---------- -I-finFn (9.1)




Hence

U =Tk + TPy +-oeeeeeee + TinFn
Up = forFy + TopFp +-oevveeee +TonFn
° (9.2)
o
Up = TmF + fpoFp +oeveeee +ThnFn
This can be written in the matrix form as
Ul [ fin fio - - fp|[R
Up| | Tor 120 fon || P2
)R G R VA (9.3)
Un) | T fanJUFn.




or,

uj=|F[{P§ (9.4)
\ Load vectorfmEARIRIL

Displacement] vectorZ i~ k)L

Flexibility matrix ZL¥TEYTA4<R)YIR



2) Stiffness Matrix (FlTE1T751) kij

kij =restoring force ({7t /1) corresponding to
coordinate / due to a unit displacement of
coordinate j (Bim (FERE)JICHEAIDOERNELI=E

FICER (B IZELSH)

Unit deflection

® | oad (fifE)(=restoring force

({3t A7)) at point /i may be

written as

Pi =KjgUy +Kjplp -+ +KinUn
(9.5)




O = k11U1 == k12u2 oeeeeeianns _|_k1nun

Dy = k21U1 1 k22u2 doeriinnnne. _|_k2nun
. (9.6)
Pi = Kjgly +KjpUp +---------- +KinUn
pn — knlul -+ kn2u2 R _|_knnun
This can be written in the matrix form as
s 3 — T )
p1| ki1 ko o - kg |fug
Po| [Kop Koo - - Kop [{Uo
< . —— . . . . . < . > (9_7)

| Pn Knt Kn2 -+ Kpn]lUn, B




or,

\P}= [f]{l%} (9.8)
External force Displacement vector
(=restoring
force) vector

Rl 4T 51
Stiffness Matrix



3) Relation between Stiffness Matrix and

Flexibility matrix (RIt4f751ETLF L EUTA1T5ID
E{®R)

® Pre-multiplying [K]_1 to both sides of Eqg. (9.8),
[KIHPI=[KT K Hu}=[1]{u} = {u}

@ Comparing this with Eqg. (9.4), it is evident that

Fl=[KI"  (9.92)

K]=[FT* (9.9b)

Hence,

[KIF]=[FIKI=[t]  (9.10)

wi=[FRP}  (90.4)
Pi=[KRuj (9.8) g




4) Maxwell and Betti’s Reciprocal Theorem
(RORIDTILERYTADHERIEADRIE)

Unit load Unit Load
i l j i l j
fij fji
fij = fj,
klj kji

Unit Displacement Unit Displacement
kij = kji
Both stiffness matrix and flexibility matrix are =
symmetric.



9.2 Equations of Motion for Multi-
Degree- of—Freedom System without

Damping (57 ERGERER) DEE)
72 30)

® It is not realistic to idealize a complex structure
by a single-degree-of-freedom system. In such a

case, a complex structure is generally idealized by
a multi-degree-of-freedom system (MDOF system).

®Equations of motion for MDOF system is
developed in this section.
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1) Equations of Motion of a MDOF System
based on d’Alembert’s Principle (#5>~"—)LMD
ERNIZESGEFATER)

® Idealize a structure by a
discrete MDOF system.

® Assume that each lumped mass
(FHE~< ) has a single degree of
freedom in the lateral direction

(KFEAR).

®As we studied in “2.4 Influence
of Support Excitation,” consider a
MDOF system subjected to a

ground motion Uy (t) at its base
and lateral external force (KA Fig. 9.1(a)

mat ) Pi(t) 13




® Based on d'Alembert’s Principle, the equilibrium of
point i may be written from Eqg. (9.6) as

P; (t) — Ml =KjqUpq +KjoUpp +-eeeeeeee +KinUpn,

Note here that because the
restoring force is proportional U,
to the relative displacement, , — @
subscript “r” is attached in the

right hand S|de. m|U| (t
® The above equation can be pi (1)
extended to n-set of ——
equations, and using Eq. (9.7), .
one obtains

Pi = KiqUp + Koy +--vvveeeee +KinUn  (9.6) Fig. 9.1 (b)




P1
P2

Pn

Hence,

m 0 0
0 my 0
| _
0
0 - - 0 m,
ki1 ko
Ko1 K22
km1 Kn2

Pi—[M fuj=[Kur

{Urn

(9.12)

S

(9.11)



® Expanding Eq. (2.15), we separate the absolute
displacement at point , u,, into the relative
displacement u,; and ground displacement u, as

Ui = Uy +Ug (9.13)
U; .
1
rhiui (t
R R () =
(a) Fig. 9.1 ()

Vi) =vg () +v(t)  (2.15) =




® By expressing Eqg. (9.13) in the matrix form, one
obtains that

uf=1{uy j+ugil} (9.14a)
U= 1{Ur +Ugil | (9.14b)

® Substitution of Eqg. (9.14) into Eqg. (9.12) leads to

{P}—M ]{Ur}_ug [M Jil =K Jup §

® Hence, the equations of motion for a MDOF
system can be written

M Juy j+[KJiup j = Pj=tg[MJl}  (9.15)

Uj =Urj +Ug (9.13)
{P;—[M Ruj=[K fiur } (9.12))




N\ 77

® For simplicity of notation, the subscript “r” which
represents the response “relative” to the base (F#E
=39 A% GE) is eliminated hereinafter.

®Hence, Eq. (9.16) is written as

[M g+ [KJuj={Pi-ug[Mfl}  (9.16)

[M fuy j+[KJup j=Pj—tg[MJ1}  (9.15)

18



2) Natural Frequencies and Natural Mode
Shapes (BHERBBEEEIRSHE—F)

®The equations of motion for free vibration is
obtained by assuming that the external force and

the foundation (ground) displacement of the right
hand side of Eq. (9.16) are zero

[M Ruj+[K fuj= {0} (9.17)
® Assume the displacement and acceleration vectors
= {Alsinat
{u}=—w?{Alsin ot = —?{u}

in which {A} represents an unknown amplitude
vector with displacement amplitudes of the mass
points, and @ is an unknown angular frequency.

M juf+[KRuf={P}-ug[M I}  (9.16) =

(9.18)




® Substituting Eqg. (9.18) into Eq. (9.17) leads to

-0’ [MJ{A}+[K]{A} = {0}
Thus, rearranging, we have

[K]- w?[M][A}= {0} (9.19)

[M Ruj+[K Juj= {0} (9.17)
{u}={A}sin ot

U= —2{Alsin ot = -2yl +18)




® For illustrative propose, it may be easy to represent
Eg. (9.19) in the form of a set of equations

(9.20)

[K]-w?[M]A} =0} (9.19) \




® For having a non trivial solution, {A}= {0}, itis
necessary that

\[K]_COZ[M]\ZO (9.21)

® Eqg. (9.21) is called characteristic equation (4F47%
F23(), or eigen value equation (BEEEHEHAHFER). By
solving Eqg. (9.21), one obtains n-set of eigen values,
or angular natural frequencies ¢ (NHDOEFET LD

LABERKREN).

® In practice, natural frequencies fi (the i-th
natural frequency, FiX[EH IxE): &(Hz)) or natural
periods T; (the i-th natural period, FEiXREFREEA(s))
are more of&en used which are deﬂned as

T, = (9.22)

1 o
"1 20 (9.23) 22

fi



® Once n-set of ® (w4, ®,, ®3, ....., ®,) are known, the

associated eigen vectors {A&} {Az} {Ag} {An}

can be found by substituting @; into E

® However, since the right hand sides of Eq. (9.19)
are zero, only the ratios or relative values of the
elements of the eigen vector{A } can be found.

®\While the eigen value problem does not fix the
absolute amplitude of the eigen vector {A }, the
mode shape is uniquely defined in terms of the
amplitude ratios.

®It is generally the practice to normalize each mode
vector by arbitrarily assigning a value of unity to the
component of greatest value.

[K]-w?[M]A} =0} (9.19) :




® The elements of {A} can be normalized by an
arbitral component, and if it is A, the {A } vector

may be written

A Al A (i
Ay Poi I Ayi | | i
) =1 =y
A= A > Ail A gi | (9-24)
A AnilAi) i
® The {¢i } vector which is associated with &) is
generally called the i-th mode shape (iXEEIREIE—

F. HANE., iRIREITE—F).
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® The analysis of Eq. (9.19) determines as many
natural frequencies and independent mode shapes as
there are degrees of freedom of the structure, which
corresponds to the number of lumped masses
assumed in the MDOF system shown in Fig. 9.1.

® The frequency is generally counted from the lowest
value as the 1st, the 2nd, ...., the n-th natural
frequency (1 REIBIREIZ. 2XEFIRIHA. ... nXEFIRE
#1) and its associated mode shapes are called the 1st
mode shape, the 2nd mode shape, ..... , the n-th mode
shape (1 REFHIREE—F. Z«RE’E#&EJFE ;. .. nREFE K
HE—L).

®The 1st natural frequency and mode shape are often
called the fundamental frequency (EAXEBEHIREE) and
the fundamental natural mode shape (EAXAEFIRISE—

).
) {K —a) LY J{A}:{o (9.19) =




® Example of mode shapes: refer to Example 1 on p.34

1st mode shape 2nd mode shape

1 I 71 N2

%1 T

N o N o
-

26



® By collecting n-sets natural
mode shape vector {4 } (i=1,2,-,n)

we obtain
[@]=lg &
(A1 A2
D1 | | P22
_¢n1
N ¢z
° D]

Pin
H2n

Phn

in Eg. (9.25) is called

(9.25)

the modal matrix (E-4 LK)y

2R).

1st mode
1 A

I %
N dn

2nd mode
1 &2

%2

n

P2

27




® In a similar way, by collecting n-sets of the

natural frequency, we have

o 0 - - O

0O w 0 - O

[Q] - . 0 - .
0

0 - 0 0 o

(9.26)

in Eq. (9.26) is called the frequency matrix

(?sz ;&VHJ v R).

® As shown in Fig. (9.22), the natural period (the i-
th natural period), T; =27/, , is generally used in

practice.

®The lowest natural period Ty is often called the,

fundamental natural period (EX[E

[=]

HEH).



3 Orthogonality Condition of Mode Shapes
(IREIE—FDERE)

® From Eqg. (9.19), we have the following relation for
the i-th mode.

o ° Mg} =K (9.27)

® Because Eqg. (9.27) is valid for any two sets of mode,
Eqg. (9.27) can be written for the r-th and the s-th

modes

a)rz:M :{¢r}
os* M Jigs )

Kligr}  (9.289)
Kligs} (9289

[K]-@?[M]}A} =0} (9.19) ,




® Transposing Eq. (9.28b) leads to

o {gs MT' ={g) KT (9.29)
® Pre-multiplying {¢, }T to Eq. (9.28a), one obtains

wr2{¢s }T [M ]{¢r } = {¢s }T [K]{¢r} (9.30a)
® Post-multiplying {¢,} to Eq. (9.29) leads to

os* (g} IM] {g )= {gs ) [KT {4} (9.30b)

® Because both [M ] and [K]are symmetric,

M]' =[M]  [K]' =[K] (9.31)
o [MIige } =K1t} (9.28a)
os* Mg} = [Kigs (9.28b) 0




® Subtracting Eq. (9.30b) from Eqg. (9.30a) taking
account of Eqg. (9.32) leads to

(a)r2 _5052){¢5}T M Jigr j=0 (9.32)
® Hence, if o #w; , we obtain

g} Mgy} =0 (9.33a)
and from Eq. (9.30b), we also have
{¢S}T[K]{¢r}zo (9.33b)

® Note that two modes having the same frequency
(r=s) are not necessarily orthogonal.

wr2{¢s }T [M ]{¢r}: {¢S}T[K]{¢r} (9.30a)

0)32{¢s }T [M ]T 1 ) = 1ds }T [K]T %) (9.30D)
M =[m] K] =[K] (9.31) =




s} [M1igy )

= {¢ls’¢23"’¢is"’¢ns}

n
= _Zlmi¢ir¢is =0
=

o O O O

o
o O O O

Br

O O O O O

0 0 my|{éh)

32



Orthogonality relation of two vectors

® If two vectors

aX KDX\
{a}:<ay> {b}:<i)y$
az | b, |

satisfy the following condition, {a}and {b}vectors
are orthogonal.

al bl=a,b, +ayby, +ash, =0

Zm|¢ir¢is =0 — ml/2¢5 1/2¢r are orthogonal
1=1 where m1/2 is called weighting
coefficient (EHAZRED).

33




Example 1: Analyze the natural frequencies and
natural mode shapes of a 2DOF system

my =50 = Pr| [kin k2 |[u
| k, £2000tf /m (P2) [Ka1 Kz (U2
My = bHOtf
U _ _
2 [K] _ kl = kl
k2 + 3000tf /m — k]_ k]_ 4 k2_
B - 2000 -2000

—2000 5000

34



® Based on Eqg. (9.20) or Eqg. (9.21),

Thus,

2000 2 20
9.8

—2000

2 90

2000-w
9.8

—2000

—2000

5000 — @® >~
9

—2000

50

5000 — @2 20
0.8

[K]-’[M]

(9.21)

35




® Solving the characteristic equations, we have

w° =196

o> =1176

® Hence

T, = 2% —0.449s

2
T, = 2" —0.183s

27

@, =14.0rad /s

@, =34.3rad /s

36




® Mode shapes (amplitude ratios) can be obtained by
substituting the computed natural frequency into the

first equation

|

Ap
® For o, {Aﬂ-}:< A21

(2000- o 2) A1 20004, =0 | 4

Ap; 2000-5.1m° 1 ‘

A 2000 2
50
2000 o2 ~2000 ¢
5 mal A

~2000 5000 5% Al O




® Note that if we substitute ,? in the second
equation, we can obtain the same mode shape as

— 200041 + (5000 — @2 S(;) Apy =0

Ayy 2000 1

A1 5000-5.10° 2

® Thus the same 1st mode shape is obtained as

_ (AlllAll}:{ﬁl\ :{1-0} 1
) <\A21/A&1 ¢21,> 0.5

38



For o,

From the first equation

(2000 — a)zz >0

Agy _ 2000 510)2
Ay 2000

Hence,
_ A2l Ay :{
) ﬁ\Azz/Azz,>

g g2 —2000Ay; =
—2.0

D

ho) {_ 0.5

(%2\

Ao |

2000 2 2
0.8

—2000 5000 —

—2000

220 50

39




® Thus, the 1st and the 2nd mode shapes (refer to
Eq.(9.24)) are

[A4] | 1.0
{m:{ﬁm A&1F=<¢ﬂ}={ }
PorlMg) (1) (05
{@}:<(A12/A22\>:{¢12}:{—0-5
Aoxl Poo) 9] (1.0
1.0
1
o o 2000t /m 1o
K, k= 3000tf /m
1st mode

-0.5

1.0

0
2nd mode



® Note that the i-th mode shape merely represents
the amplitude ratios among the n-set of values.
Therefore, the first mode can be expressed in

various form as

11t =los]~{r0) ~lo1e7]

® The modal matrix by Eq. (9.25) is written as
A1 do
[@]=[4 )= 1
D1 P
- 1.0 -0414 2

0414 10

41



® \We can know that two modes satisfy the
orthogonal condition as

) Mg}

= {1.0,0.5}:2 2{1_85} = m{1.o,o.5}{;8'5} -0
) [Klig)

oo 0 W0,

42



Example 2: Analyze the natural frequencies and
natural mode shapes of a 2DOFS which has the
same masses and k, stiffness with those of
Example 1, but k, stiffness of 4000tf/m.

My = 50tf
1 ——U
.Uy
2
k2 =4000tf /m

9

4 D —

o] K1 ki |[Ug

P2] |Kop koo [{Ug)
= ==
[K]: 1 1
=k kptky
- 2000 —2000

—2000 6000




® Based on Eqg. (9.20) or Eqg. (9.21),

Thus,

2 90

2000 @
9.8

—2000

2 90

2000-w
9.8

—2000

—2000

6000 — ? 950

—2000

6000 — w2 20
0.8

=0

® Solvmg the characterlstlc equations, we have

a)l =229

@, =15.15rad /s @ =

T, = 0.4155

0,° =1338

=36.58rad /s

Example 1
T, =0.449s

T,=0.172s <> T,=0.183s




® Mode shapes (amplitude ratios) can be obtained by
substituting the computed natural frequencies

For oy

(2000 — @, 5O)All 20004, =

Ay 2000-5.10y°
Ay 2000

For o,

(2000 — 0 5O)A&2 2000A,, =

=0.416

1

Ao _2000-5.1wp" _ ..
Ao 2000 =




®Hence,

e e Y
il o) o
ky k= 2000tf /m
ky £ 4000tf /m

k, =3000tf /m

1St mOde

2nd moase



® Check of orthogonal condition

' Mg}

m 0 0.414
= {1.0,0.414} { }
0O m
0.
0

=m{1.0,0. 414}{

) Kl

={1.0,0.414)

o

1.

- 2000 —2000
—2000 5000

I

0.414
1.0

}:
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