Structural Analysis II

構造力学第二
（5）

Kazuhiko Kawashima

 Department of Civil Engineering Tokyo institute of Technology東京工業大学大学院理工学研究科土木工学専攻川島一彦

Structural clarification

Same as Example 10．2，i．e．，the structure is statically indeterminate to the second order．

Primary structure

Same as Example 10．2．

Compatibility Equations

EXAMPLE 10.5

Consider again the beam and loading of example 10．2， but，in this case，assume that points b and c are supported by elastic supports that have stiffnesses of $\mathrm{k}_{\mathrm{s} 1}=\mathrm{k}_{\mathrm{s} 2}=0.006 \mathrm{El}$ ．Determine the reaction carried by the elastic supports．

Determination of displacements quantities and flexible coefficients

Same as Example 10．2．

$$
\begin{aligned}
& \text { Redundant reactions } \\
& \qquad\left[\begin{array}{cc}
D_{11}+1 / k_{s 1} & D_{12} \\
D_{21} & D_{22}+1 / k_{s 2}
\end{array}\right]\left\{\begin{array}{l}
R_{1} \\
R_{2}
\end{array}\right\}=\left\{\begin{array}{l}
-\Delta_{10} \\
-\Delta_{20}
\end{array}\right\}
\end{aligned}
$$

－Substitution leads to
$\frac{1}{E I}\left[\begin{array}{cc}595.1+166.7 & 488.4 \\ 488.4 & 595.1+166.7\end{array}\right]\left\{\begin{array}{l}R_{1} \\ R_{2}\end{array}\right\}=\frac{1}{E I}\left\{\begin{array}{l}341,185 \\ 341,185\end{array}\right\}$
－From which

$$
\left\{\begin{array}{l}
R_{1} \\
R_{2}
\end{array}\right\}=\left\{\begin{array}{l}
272.9 \\
272.9
\end{array}\right\} \quad \begin{aligned}
& \Delta_{10}+D_{11} R_{1}+D_{12} R_{2}=\Delta_{1}=-\frac{R_{1}}{k_{s 1}} \\
& \Delta_{20}+D_{21} R_{1}+D_{22} R_{2}=\Delta_{2}=-\frac{R_{2}}{k_{s 2}}
\end{aligned}
$$

－Note that comparing the results with those of
Example 10．2，the magnitudes of the interior redundant reactions are reduced by the softening

－When the primary structure is subjected to the actual loading as shown in Fig．10．6（b），a slope discontinuity（角度の非連続性）of θ_{10} occurs at point a that violates the internal compatibility condition（内部適合条件）for beam continuity．
－Here，the subscript 0 is again used to indicate that a response is associated with the actual loading on the primary structure．

Fig．10．6（b）

- To restore slope compatibility at point a, a unit
value of the redundant moment is introduced ($\mathrm{M}_{11}=1.0$) on the primary structure as shown in Fig. 10.6(c).
- The second 1
subscript denotes that this is the value of M_{1} associated with a unit value of the redundant moment.
-This loading
produces a slope discontinuity at point a of D_{11}.

(b)

- The final slope discontinuity θ_{1} is determined by superimposing the effect of the actual loading and the effect of the unit moment amplified by the magnitude of redundant moment, i.e.,

$$
\theta_{10}+D_{11} M_{1}=\theta_{1}
$$

(10.16)

- Thus, the redundan moment is

$$
M_{1}=\frac{\theta_{1}-\theta_{10}}{D_{11}}
$$

(10.17)

- A clockwise rotation
is taken as positive.
- Both θ_{10} and θ_{11} are
positive.
Fig. 10.6

$$
S=S_{0}+S_{1} M_{1}
$$

- where S is any response quantities of interest, S_{0} is the value of S when the actual loading is applied to the primary structure, and, S_{1} is the value of S when a unit value of M_{1} is applied to the primary structure.

(b)

Fig. 10.6

Example 10.6

Determine the internal bending moments at the supports for the structure below. Relative I values are given.

Structure classification
The structure is statically indeterminate to the first degree.

Primary structure and loading

-The internal support moments are shown as follows.
-The force boundary condition at point 1 and 3
require that $M_{1}=M_{3}=0$, and M_{2} is taken as the redundant moment.

- The primary structure is, therefore, two simply supported beams.

Compatibility equation and solution for redundant moment
$\theta_{20}+D_{22} M_{2}=\theta_{2}$
Therefore,

The most obvious approach which we studied is to select the（ $m-1$ ）interior reactions as the redundants as shown in Fig．10．7（b）．
\bullet An alternative approach is to select the internal moment at the（ $\mathrm{m}-1$ ）interior support points as redundants as shown in Fig．10．7（c）．
－In the latter case，the primary structure is a series of m simply supported beams．

（b）

（c）
Fig． 10.7

－The structure is externally indeterminate to the （m－1）th degree．
－The overall classification of the structure is indeterminate to the（ $\mathrm{m}-1$ ）th degree
－In the approach shown in Fig．10．7（c），the
compatibility for the given structure is relaxed at each of the interior support points where continuity of slope is violated．
－The advantage of this selection of redundants is that the required displacement quantities are easily determined for the m simply supported beams．

- Attention is now focused on the two-span section that reaches over the supports i, j and k , as shown in Fig. 10.8(a)
-When the internal moments are removed and the continuous beam is transformed into a series of simply supported beams, there is a slope discontinuity $\theta_{j 0}$ at support j under actual loading as shown in Fig. 10.8(b).

Fig. 10.8(a)

- To correct the compatibility requirements for the original structure, introduce M_{i}, M_{j} and M_{k} through three separate loading conditions as shown in Fig. 10.8(c).
- The
discontinuity in slope at point j corresponding to each of these unit moment cases are shown as $\mathrm{D}_{\mathrm{j}}, \mathrm{D}_{\mathrm{jj}}$ and D_{jk},
respectively, which
are flexibility coefficients for the primary structure.

- The flexibility coefficients are

$$
\begin{equation*}
D_{j i}=\frac{l_{i}}{6 E I_{i}} \quad D_{j j}=\frac{l_{i}}{3 E I_{i}}+\frac{l_{j}}{3 E I_{j}} \quad D_{j k}=\frac{l_{j}}{6 E I_{j}} \tag{10.20}
\end{equation*}
$$

where, I_{i} and I_{j} are the lengths for spans i and j, and I_{i} and I_{j} are the corresponding moments of inertia.

- Substitution of

Eq. (10.20) into Eq. (10.19) leads to

$$
\begin{equation*}
\frac{I_{i}}{I_{i}} M_{i}+\left(\frac{2 l_{i}}{I_{i}}+\frac{2 l_{j}}{I_{j}}\right) M_{j}+\frac{I_{k}}{I_{k}} M_{k}=-6 E \theta_{j 0} \tag{10.21}
\end{equation*}
$$

－For the complete structure，the slope discontinuities that occur at all of the interior supports must be corrected．
－Thus，for the structure of Fig．10．7，Eq．（10．21）
must be applied with $\mathrm{j}=2,3, \ldots, \mathrm{~m}$ ．
－However，each of the（ $m-1$ ）compatibility equations involves only three moments；the moment at the point where compatibility is being considered and the moments at the far ends of the spans to the left and the right．

10．6．3 Application of Three－Moment Equation

－Three moment equation is particularly useful in determining the internal support moments of a continuous beam（連続ばり）
－For the arrangement given in Fig．10．7，the three－ moment equation would be applied at each of the （ $m-1$ ）interior support points．This would provide the （ $m-1$ ）compatibility equations that are required for the determination of the $(m-1)$ redundant moments．

－From this reason，Eq．（10．21）is commonly
referred to as the three－moment equations（3連モーメ ント方程式）．
－The original presentation was given in 1857 by the French engineer Clapeyron（クラペイロン）．

30
－For fixed－end beams，such as the one shown in Fig．
10．9，there is an additional redundant moment at each fixed end．
\bullet Although a special form of the three－moment equation could be formulated for this case，a convenient artifice is to replace the fixed end by an imaginary end span of zero length．
\bullet The three－moment equation is then applied at the end support points as well as the interior points．

EXAMPLE 10.7

Determine the support moments for the structure given in Example 10.6 by applying the three-moment equation.

Structure classification

As already studied in Example 10.6, this structure is statically indeterminate to the first degree

$$
\begin{gathered}
\frac{10}{I} M_{1}+2\left(\frac{10}{I}+\frac{20}{2 I}\right) M_{2}+\frac{20}{2 I} M_{3}=-6 E \frac{833.3}{E I} \\
\frac{40}{I} M_{2}=-\frac{5,000}{I} \\
M_{2}=-125 \mathrm{kip} \cdot \mathrm{ft}
\end{gathered}
$$

EXAMPLE 10.8

Determine the support moments for the structure shown by applying the three-moment equation.

Structure classification
Structure is statically indeterminate to the second degree.

Point 2;

$$
\mathrm{i}=1, \mathrm{~J}=2, \mathrm{k}=3 \quad l_{1}=0 \quad l_{2}=10 \mathrm{~m}
$$

$l_{i} M_{i}+2\left(l_{i}+l_{j}\right) M_{j}+l_{k} M_{k}=-6 E I \theta_{j 0} \quad(10.21)$
$0 \cdot M_{1}+2(0+10) M_{2}+10 \cdot M_{3}=-6 E I \frac{768}{E I}$
$20 M_{2}+10 M_{3}=-4,608$

Solution for moments

$$
\begin{aligned}
& 20 M_{2}+10 M_{3}=-4,608 \\
& 10 M_{2}+40 M_{3}=16,532
\end{aligned}
$$

Solving simultaneously,

$$
\begin{aligned}
& M_{2}=-27.2 \mathrm{kNm} \\
& M_{3}=-406.5 \mathrm{kNm}
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{i}=2, \mathrm{j}=3, \mathrm{k}=4 \quad l_{2}=10 \mathrm{~m} \quad l_{3}=10 \mathrm{~m} \\
10 M_{2}+2(10+10) M_{3}+10 M_{4}=-6 E I \frac{2,755.3}{E I}
\end{gathered}
$$

$$
10 M_{2}+40 M_{3}=16,532
$$

