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EXAMPLE 10.5

Consider again the beam and loading of example 10.2,
but, in this case, assume that points b and c are
supported by elastic supports that have stiffnesses of
ks1=ks»,=0.006EI. Determine the reaction carried by
the elastic supports.
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Structural clarification

Same as Example 10.2, i.e., the structure is
statically indeterminate to the second order.

Primary structure
Same as Example 10.2.

500 kN

Ry = 250 kN Rig=Ry=0

Determination of displacements quantities and
flexible coefficients

Same as Example 10.2.

Compatibility Equations
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Ry =0 — 4

Ry =0714kN-) Ry =1kN R, =0 Ry =0.286 kN(-)
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R,;;=0286kN(-) R,=0 Ry =1 Rgy = 0.714 kN(-)

Ry

A1o +D11Ry + D1oRp = Ag|= X

RS; (10.7)

A0+ D21Ry +D2pRy = Agl= ks .
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Redundant reactions
{Dll +1/kg1 D1, H Rl} _ {—Alo}
D21 Doy +1/kso [[R2]  [—A20
® Substitution leads to
1 {595.1+ 166.7 488.4 H R } 3 1 {341,185}

EI| 4884  595.1+166.7||R,] EI |341185
® From which
Ru|_[2729 A10+D11R; +DppRy = A1 = —kil
Ry 1272.9 Rszl
A0+ Do1Ry + DRy = Ap = T
)

® Note that comparing the results with those of
Example 10.2, the magnitudes of the interior
redundant reactions are reduced by the softening
effect of the elastic supports 500kN
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500kN
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10.6 Selection of Internal Moments as
Redundants

10.6.1 Single Redundant Moment

® Consider the propped cantilever shown in Fig.
10.6(a). This is statically indeterminate to the first
degree.

®Instead of identifying an external reaction component
as the redundant, we now select the internal moment
at point a, M;, as the redundant.

®The primary structure is then formed by removing the
redundant moment (inserting a hinge as a moment
release at point a), which essentially reduces member
ab to a simply supported beam
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6=0 Fig. 10.6(a)

® When the primary structure is subjected to the
actual loading as shown in Fig. 10.6(b), a slope
discontinuity (2 ED3IE:&EHEE) of 61 occurs at point a
that violates the internal compatibility condition (R}
W& &) for beam continuity.

®Here, the subscript O is again used to indicate that a
response is associated with the actual loading on the
primary structure.

Fig. 10.6(b)




® To restore slope compatibility at point a, a unit
value of the redundant moment is introduced
(M,;=1.0) on the primary structure as shown in Fig.
10.6(c).

A S Y S S N W S N
® The second 1 'i\‘:m
subscript denotes 6=0 @
that this is the value
of M, associated RS —
with a unit value of x/" &0
the redundant Mio=0 ““\ ““““
moment. (b)
®This loading My =1
produces a slope — , =
discontinuity at RN fﬂ:ﬂll
point a of D;. .i‘-(-c-)--“‘

Fig. 10.6 ?

® The final slope discontinuity ¢, is determined by
superimposing the effect of the actual loading and
the effect of the unit moment amplified by the
magnitude of redundant moment, i.e.,

+ DMy = /s s

6o+ DM =6, -§’;«=_’gl r g
(10.16) v @
® Thus, the redundan 1T 1T T 1 S S S
moment is §M D\Jaﬁo ______ =
M, = A=00 .
1 b ®)
(10.17) 7"

® A clockwise rotation ¥ . b6 i
is taken as positive. S
®Both &g and &}, are ) T~ (© o
positive. Fig. 10.6

® When there is no slope discontinuity at point a,
such as the case shown in Fig. 10.6(a), @ is zero.

® Having determined

redundant moment
M;, we can readily
determine the final

the magnitude of the '§Gfl N S S S S N S
‘3"‘¢=M|
a,=0

@

solution from g = :

applying statics to _\‘“%n,/"’_“ Ao e

the primary structure
or through (b)
superposition in the My =1

form -
S= SO +S]_M1 = e S
(10.18) Fig. 10.6 -

S=S+SM;  (10.18)]

® where S is any response quantities of interest, S is
the value of S when the actual loading is applied to
the primary structure, .

v rrq I

and, S, is the value Y, v
of S when a unit o =0 @
value of M, is
applied to the y_T 1T 71 | I
i ¥ Ty ’/a. ‘,-"3%
primary structure. ./ B0
My=0 B a
\
(b)
3=
T “lqgll I
\ (C) 1z
Fig. 10.6




Example 10.6

Determine the internal bending moments at the
supports for the structure below. Relative | values
are given.
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Structure classification

The structure is statically indeterminate to the
first degree.
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Primary structure and loading

®The internal support moments are shown as
follows.

®The force boundary condition at point 1 and 3
require that M;=M3=0, and M, is taken as the
redundant moment.

® The primary structure is, therefore, two simply
supported beams.

M, =0

IR g,
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Actual loading

o
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Unit value of M,

My =1

— —,
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Displacement ' — . =

calculation =
020 108 o
I e e s s o s
# El  && 2El Y
250
2 2 250 22
A5 =Sx %2010
3737 2B T e h -
2
60 =% =833.3( ft’k /El)

Area of a parabola shape (J##&DEE)
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D22: 1 2,7 8y \Dn

10ft 4, 51 20ft

A% El ;ﬂ;qk 2EI

M tkip-i) /\

A2 1><i><10><6.77

0, =-L=2 El =3.33( ft?k / El)
10 10
A2 1><L><20><13.33

Oy = -3 =2 2El = 3.33( ft%k /El)
20 20
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8y}, \Daz
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2 1><i><10><6.77
El

1><i><20><13.33
2 2El

=3.33( ft%k /El)
10

= 3.33( ft%k / EI)

A1
Oy =21 _
2710
2
A3
e ===
2r 20

20

Dy, = 6y + 6y = 6.67( ft?k/ El)
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Compatibility equation and solution for redundant
moment

920 + D22M 2= 92 7_'*—_ _—

Therefore,
M, =20 _ 8333__
Dy,  6.67

. L T T T T 1
Final results X T K o Z
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M,=-125 kip ft 250
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10.6.2 Multiple Redundant Moments for
Continuous Beams: The three-moment
equations GEfEFYICL T, REIE—AVIDER
FETDHEE IEE—AFAEN)

® Consider the m-span continuous beam (mX/\>E#;
1Y) shown below

14

! S e e MO |

Support 1 2 i J k m : m+1

span | ) | | . f g | | » |
Structural Classification: Typical Interior Support:

e External: £, > M; tinternai moment)

Jj=m+1 (m+2)>3 [T (J‘ —
r,=m+2 = Statically indeterminate to (m - 1)th degree ) %
r=3 <

ned Overall: (3m, +r)>3j+n

3m+m+2>3m+1)+0 '
dm+2>3m+ 3

- Statically indeterminate to (m - 1)th degree Jts; (external reaction)

| | I e |

A4 Iyl
Support 1 2 i J k m m+1
span | ) | | . f g | | » |
Structural Classification: Typical Interior Support:
ot External: £, > M; tinternai moment)

Jj=m+1 (m+2)>3 [T (J‘ —
r,=m+2 = Statically indeterminate to (m - 1)th degree ) %
Overall: (3m, +r)>3j+n '
3m+m+2>3m+1)+0 '
dm+2>3m+ 3 i
- Statically indeterminate to (m - 1)th degree o et

® The structure is externally indeterminate to the
(m-1)th degree.

®The overall classification of the structure is
indeterminate to the (m-1)th degree
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® The most obvious approach which we studied is to
select the (m-1) interior reactions as the redundants
as shown in Fig. 10.7(b).

®An alternative approach is to select the internal
moment at the (m-1) interior support points as
redundants as shown in Fig. 10.7(c).

®In the latter case, the primary structure is a series
of m simply supported beams.

SN S o we e e SO

(m - 1) External redundant reaction components

(b)

(m - 1) Internal redundant moments
© 23
Fig. 10.7

® In the approach shown in Fig. 10.7(c), the
compatibility for the given structure is relaxed at
each of the interior support points where continuity
of slope is violated.

®The advantage of this selection of redundants is
that the required displacement quantities are easily
determined for the m simply supported beams.

(m - 1) Internal redundant moments

Fig. 10.7(c)

24




® Attention is now focused on the two-span section
that reaches over the supports i, j and k, as shown in
Fig. 10.8(a).

®\When the internal moments are removed and the
continuous beam is transformed into a series of
simply supported beams, there is a slope
discontinuity 49j0 at support j under actual loading as
shown in Fig. 10.8(b).

. = o

I i 1 L -
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Fig. 10.8(a)

® Assuming superposition, we multiply each of these
discontinuity by the actual value of the respective
redundant moment and combine them with the
discontinuity 9]0 to obtain the total discontinuity 9j

® Since @4: is zero
in the givén
structure, the
final compatibility
equation at point j
becomes

DjiMi+Dijj
+Djk|\/|k+49j0=9j=0 M,=1

(10.19) 4 W%\M,ﬁ

l s

® To correct the compatibility requirements for the
original structure, introduce M;, M; and M, through
three separate loading conditions as shown in Fig.
10.8(c).

® The
discontinuity in
slope at point j
corresponding to
each of these unit
moment cases are J
shown as Dj;, D;; ‘7'9”»’7);
and Dy,

respectively, which T
are flexibility
coefficients for the 7745, LA "D, |
primary structure.

Fig. 10.8(c)

Fig. 10.8(c)

® The flexibility coefficients are

ii L — Dk =—=— (10.20)

D..= D .
JI 6El; 1) 3E|i 3E|j 6E|j

where, |, and |, are  M*!

the lengths for 5-”9,,&9, S~ |
spans i and j, and ’ ’ ’
I and I; are the

corresponding M;=1 '
moments of 3779””,»’ | -
inertia. : V :
® Substitution of -
Eg. (10.20) int0 ¢ .
Eq. (10.19) leads 7 LA T 5]
to

Fig. 10.8(c)




. o 20
LIMiJr 27|I+7J Mj‘*'LkMk:_GEejO (10.21)
I i1 I

® For the complete structure, the slope discontinuities
that occur at all of the interior supports must be
corrected.

® Thus, for the structure of Fig. 10.7, Eqg. (10.21)
must be applied with j=2, 3, ..., m.

®However, each of the (m-1) compatibility equations
involves only three moments; the moment at the point
where compatibility is being considered and the
moments at the far ends of the spans to the left and
the right.

(m - 1) Internal redundant moments

Fig. 10.7(c)

® From this reason, Eq. (10.21) is commonly
referred to as the three-moment equations (3EE—*
VRARER).

®The original presentation was given in 1857 by the
French engineer Clapeyron (95XR40Y).
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10.6.3 Application of Three-Moment Equation

® Three moment equation is particularly useful in
determining the internal support moments of a
continuous beam (GE#ILY).

® For the arrangement given in Fig. 10.7, the three-
moment equation would be applied at each of the
(m-1) interior support points. This would provide the
(m-1) compatibility equations that are required for
the determination of the (m-1) redundant moments.

! 4 ! S }
Suppurtyléz % # ﬁ % I 3% ;%
' ‘ Fig. 10.7 ’ * moom

® For fixed-end beams, such as the one shown in Fig.
10.9, there is an additional redundant moment at each
fixed end.

®Although a special form of the three-moment equation
could be formulated for this case, a convenient artifice
is to replace the fixed end by an imaginary end span of
zero length.

®The three-moment equation is then applied at the end
support points as well as the interior points.

{ e e X
|

a b ¢

. i
_..!_ 0 |._ Fig. 10.9 Treatment of fixed-end beam —-I 0 |—-




EXAMPLE 10.7

Determine the support moments for the structure
given in Example 10.6 by applying the three-moment

equation.
5 Wit

|
I

rt
Suppol 1 2
1

Structure classification

As already studied in Example 10.6, this structure
is statically indeterminate to the first degree

33

Three-moment equation for support j

: o 25
:'Mi +[2I'+‘]Mj+|"Mk =-6E0j, (10.21)

T I

® This equation is applied at point 2 (j=2).

1 2
A 250 40 16,667
m,lo.W -10= 552
25‘1
M e (83 _ 8333
0= 20 - E

EI
l_lo'—‘l Il =1OI |1=|

i=1, j=2, k=3 L, =20" 1,=2I
@Ml 2(10 20),\/|2 @Ms o 8333
I 21 21 El

1 2

p T 801
M zoﬂ o . 83 _ 8333
0= 20 T EI
EI l_lg-_.l
10M1+2(10+20jM2+20M3 —GE@
| | 2l 21 El
@MZ__s,ooo

|
M, = —125kip- ft
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EXAMPLE 10.8

Determine the support moments for the structure
shown by applying the three-moment equation.

50 kN/m
{ T 1 1 1 1 EI=constant

—_f

Structure classification
Structure is statically indeterminate to the second
degree.

;120 kN

36




Modified structure

120 kN 50 kN/m
. l { T | 1 T | Er=Cconstant
’k 4m —-|
I 10m ! 10m !
i S S S
Support 1 2 3 4
Span |1 ] 2 | 3 |

Three-moment equation for support j

iM; +2(l +1))M j + kM =—6EI6o (10.21)

® This equation must be applied at points 2 and373.

—== from moment-area thecrems

W

i=1, J=2, k=3 ;=0 I, =10m

0-M1+2(0+10)M2 +10-M3=—6E| %6?

20M +10M3 = —4,608 s

} S
Support 1 2 3 4
Span [ 1] 2 [ 3 |
Point 3
/
\l_/g%i’/r T T 1T 13
s ’ O35 = 2 ?E‘?f‘a from -area th
i=2, j=3, k=4 l, =10m |3 =10m
2,755.3

10M, +2(10+10)M3 +10M 4 = —6EI
10M +40M3 = 16,532

El
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Solution for moments

20M, +10Mg = 4,608
10M 2+ 40M3 = 16,532

Solving simultaneously,
My =—-27.2kNm
M3 =—406.5kNm

!120 kN 50 kN/m

. M‘I = Constant
’k 4m —-|
10

m ! 10m !

40

10



