Structural Analysis II

構造力学第二

（4）

Kazuhiko Kawashima
Department of Civil Engineering Tokyo institute of Technology東京工業大学大学院理工学研究科土木工学専攻川島一彦

Example 10.2

- Determine the reaction, and construct the final shear and moment diagrams for the structure and loading given. The quantity El is the same for each span.

- This structure is statically indeterminate to the second order.

Primary Structure and Loading

- Select $R_{b y}$ and $R_{c y}$ as redundant reactions, which produces a simply supported beam as the primary structure.

- Shear and moment of primary structure subjected to given load are obtained as

Unit value of $R_{1}=R_{11}$

$M_{1}(\mathrm{kN} \cdot \mathrm{m})$

Unit value of $R_{2}=R_{22}$

Displacement calculations

Conjugate beam method（共役ばり法，モールの弾性荷重法）is used because of its efficiency in determining two displacements along the length of the structure

The flexibility coefficients D_{11} and D_{12}

$$
\begin{aligned}
& \overbrace{\frac{71.4 \mathrm{kN} \cdot \mathrm{~m}^{2}}{E I}}^{\frac{7.14 \mathrm{kN} \cdot \mathrm{~m}}{E I}} \\
& \begin{array}{l}
D_{11}=\frac{71.4}{E I} \times 10-\frac{71.4}{2 E I} \times 10 \times 3.33=\frac{595.1 \mathrm{kN} \cdot \mathrm{~m}^{3}}{E I} \\
D_{21}=\frac{53.6}{E I} \times 10-\frac{2.86}{2 E I} \times 10 \times 3.33=\frac{488.4 \mathrm{kN} \cdot \mathrm{~m}^{3}}{E I}
\end{array}
\end{aligned}
$$

The flexibility coefficients D_{21} and D_{22}

$$
\begin{array}{ll}
D_{12}=D_{21} & \text { By Maxwell's law (Eq. (2.72) } \\
D_{22}=D_{11} & \text { By symmetry }
\end{array}
$$

Redundant reactions

$$
\begin{align*}
\Delta_{10}+D_{11} R_{1}+D_{12} R_{2} & =\Delta_{1} \tag{10.7}\\
\Delta_{20}+D_{21} R_{1}+D_{22} R_{2} & =\Delta_{2}
\end{align*}
$$

- Since $\Delta_{1}=\Delta_{2}=0$ in Eq. (10.7), we have

$$
\left[\begin{array}{ll}
D_{11} & D_{12} \\
D_{21} & D_{22}
\end{array}\right]\left\{\begin{array}{l}
R_{1} \\
R_{2}
\end{array}\right\}=\left\{\begin{array}{l}
-\Delta_{10} \\
-\Delta_{20}
\end{array}\right\}
$$

$$
\begin{gather*}
\Delta_{10}+D_{11} R_{1}+D_{12} R_{2}=\Delta_{1} \tag{10.7}\\
\Delta_{20}+D_{21} R_{1}+D_{22} R_{2}=\Delta_{2}
\end{gather*}
$$

- Substituting for displacement quantities and, noting that El cancels, leads to

$$
\left[\begin{array}{ll}
595.1 & 488.4 \\
488.1 & 595.1
\end{array}\right]\left\{\begin{array}{l}
R_{1} \\
R_{2}
\end{array}\right\}=\left\{\begin{array}{l}
341,185 \\
341,185
\end{array}\right\}
$$

Solution for the redundant reactions gives

$$
\left\{\begin{array}{l}
R_{1} \\
R_{2}
\end{array}\right\}=\left\{\begin{array}{l}
314.9 \\
314.9
\end{array}\right\}
$$

-The remaining reactions are readily determined from superposition

$$
S=S_{0}+S_{1} R_{1}+S_{2} R_{2}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
R_{a x} \\
R_{a y} \\
R_{b y} \\
R_{c y} \\
R_{d y}
\end{array}\right\}=\left\{\begin{array}{l}
R_{30} \\
R_{40} \\
R_{10} \\
R_{20} \\
R_{50}
\end{array}\right\}+\left\{\begin{array}{l}
R_{31} \\
R_{41} \\
R_{11} \\
R_{21} \\
R_{51}
\end{array}\right\} \times R_{1}+\left\{\begin{array}{l}
R_{32} \\
R_{42} \\
R_{12} \\
R_{22} \\
R_{52}
\end{array}\right\} \times R_{2}^{R_{30}=0} \longrightarrow_{R_{31}=0}^{a} \sqrt{R_{R_{41}=250}=0.714 \mathrm{kN(-)}} \\
& =\left\{\begin{array}{l}
0 \\
250 \\
0 \\
0 \\
250
\end{array}\right\}+\left\{\begin{array}{l}
0 \\
-0.714 \\
1 \\
0 \\
-0.286
\end{array}\right\} \times 314.9+\left\{\begin{array}{l}
0 \\
-0.286 \\
0 \\
1 \\
-0.714
\end{array}\right\} \times 314.9=\left\{\begin{array}{l}
0^{R_{42}=0.286 \mathrm{kN}(-)} \\
-64.9 \\
314.9 \\
314.9 \\
-64.9
\end{array}\right\} \mathrm{kN}
\end{aligned}
$$

Shear Diagram

$$
\left\{\begin{array}{l}
M_{a} \\
M_{b} \\
M_{e} \\
M_{c} \\
M_{e}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
2,500 \\
4,375 \\
2,500 \\
0
\end{array}\right\}+\left\{\begin{array}{l}
0 \\
-7.14 \\
-5.00 \\
-2.86 \\
0
\end{array}\right\} \times 314.9+\left\{\begin{array}{l}
0 \\
-2.86 \\
-5.00 \\
-7.14 \\
0
\end{array}\right\} \times 314.9
$$

Moment Diagram

EXAMPLE 10.3

Determine the reactions and bar forces for the statically indeterminate truss shown．The quantity $E A$ is the same for each member．

－The structure is statically determinate internally（静的内的静定）and statically indeterminate externally to the first order（1次の静的外的不静定）．

Primary structure and loadings

Select R_{1} as the redundant reaction

Displacement calculations

The complementary virtual work method（補仮想仕事の原理）is used to obtain the required displacement quantities．

$$
\begin{equation*}
\sum_{i=1}^{n} \delta P_{i} \Delta_{i}=\sum_{j=1}^{m} \frac{\delta F_{p} \cdot F_{\Delta}}{E A} l \tag{7.18}
\end{equation*}
$$

$$
1 \times \Delta_{10}=\frac{\sum F_{1} F_{0}}{E A} l \quad 1 \times D_{11}=\frac{\sum F_{1}^{2}}{E A} l
$$

$1 \times \Delta_{10}=\frac{\sum F_{1} F_{0}}{E A} l$		$1 \times D_{11}=\frac{\sum F_{1}^{2}}{E A} l$			
	l	F_{0}	F_{1}	$F_{1} F_{0} l$	$F_{1}^{2} l$
Member	m	kN	kN	$(\mathrm{kN})^{2} \cdot \mathrm{~m}$	$(\mathrm{kN})^{2} \cdot \mathrm{~m}$
$a b$	10.0	0	+2.00	0	40.0
$b c$	10.0	0	+2.00	0	40.0
$a e$	11.2	0	-2.24	0	56.2
$e d$	11.2	+55.9	-2.24	-1402.4	56.2
$e b$	5.0	0	0	0	0
$e c$	11.2	-55.9	0	0	0
$c d$	10.0	-25.0	+1.00	-250.0	10.0
Σ				-1652.4	+202.4

$$
\begin{array}{ll}
1 \times \Delta_{10}=\frac{\sum F_{1} F_{0}}{E A} l & 1 \times D_{11}=\frac{\sum F_{1}^{2}}{E A} l \\
=\frac{-1,652.4}{E A}(\mathrm{kN} \cdot \mathrm{~m} / E A) & =\frac{202.4}{E A}(\mathrm{kN} \cdot \mathrm{~m} / E A)
\end{array}
$$

	l m	F_{0} kN	F_{1} kN	$F_{1} F_{F_{0}} l$ $(\mathrm{kN})^{2} \cdot \mathrm{~m}$	$F_{1}^{2} l$ $(\mathrm{kN})^{2} \cdot \mathrm{~m}$
Member	10.0	0	+2.00	0	40.0
$a b$	10.0	0	+2.00	0	40.0
$b c$	0	-2.24	0	56.2	
$a e$	11.2	+55.9	-2.24	-1402.4	56.2
$e d$	11.2	0	0	0	0
$e b$	5.0	-55.9	0	0	0
$e c$	11.2	-25.0	+1.00	-250.0	10.0
$c d$	10.0			-1652.4	+202.4
Σ					

Calculation of redundant reaction
$\Delta_{10}+D_{11} R_{1}=\Delta_{1}$
Since $\Delta_{1}=0$
$R_{1}=-\frac{\Delta_{10}}{D_{11}}$
$\Delta_{1}=0 \uparrow$

$=-\frac{-1,652.4}{202.4}=8.16$

Unit value of $R_{1}=R_{11}$

Member forces

| Member
 $r s$ | $\left(F_{r s}\right)_{1} \cdot R_{1}$
 kN | $F_{r s}=\left(F_{r s}\right)_{0}+\left(F_{r s}\right)_{1} \cdot R_{1}$ |
| :---: | :---: | :---: | :---: |
| kN | | |

where $\left(F_{r s}\right)_{1}=F_{1}$ force in member $r s$, and $\left(F_{r s}\right)_{0}=F_{0}$ force in member $r s$.

Reactions

Reaction	$\mathrm{R}_{q 0}$	$\mathrm{R}_{q 1}$	$R_{q 1} \cdot R_{1}$	$R_{q}=R_{q 0}+R_{q 1} \cdot R_{1}$
q	kN	kN	kN	kN
1	-	1.00	+8.16	+8.16
2	50	-1.00	-8.16	+41.84
3	-50	2.00	+16.32	-33.68
4	50	-2.00	-16.32	+33.68

where $R_{q 1}=R_{q}$ for F_{1} system, and $R_{q 0}=R_{q}$ for F_{0} system.
$R_{1}=8.16$

Final results for reactions

10．5 Support Settlements（支点沈下）and

Elastic Supports（弾性支点）

－Support settlement in statically indeterminate structures induces forces throughout the structure．
－Consider the structure shown in Fig． 10．1 The compatibility equation given as Eq． （10．2）includes the displacement Δ_{1} ，which is the upward vertical displacement at point b for the actual structure．

Fig． 10.1

- If thee is a downward settlement of $\Delta_{1 s}$, then

$$
\Delta_{1}=-\Delta_{1 s}
$$

In such a case, R_{1} becomes from Eq. (10.2) as

$$
R_{1}=\frac{-\Delta_{1 s}-\Delta_{10}}{D_{11}}
$$

- Thus, it is clear that the magnitude of redundant reaction is affected by the support settlement
- Once R_{1} has been obtained, the final response quantities are evaluated by superposition

(a)

(c)

Fig. 10.1

- In a similar manner, if downward settlements of $\Delta_{1 s}$ and $\Delta_{2 s}$ are prescribed for the structure of Fig. 10.2, Eq. (10.8) becomes

$$
\left[\begin{array}{ll}
D_{11} & D_{12} \\
D_{21} & D_{22}
\end{array}\right]\left\{\begin{array}{l}
R_{1} \\
R_{2}
\end{array}\right\}=\left\{\begin{array}{l}
-\Delta_{s 1}-\Delta_{10} \\
-\Delta_{2 s}-\Delta_{20}
\end{array}\right\}(10.11)
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
D_{11} & D_{12} \\
D_{21} & D_{22}
\end{array}\right]\left\{\begin{array}{l}
R_{1} \\
R_{2}
\end{array}\right\}=\{ } \\
& \text { - The solution of Eq. } \\
& \text { (10.11) gives the } \\
& \text { magnitudes of the }
\end{aligned}
$$ redundant reactions R_{1} and R_{2} and other quantities.

Fig. 10.2
－If there are prescribed settlements for the end supports（はりの両端で支点沈下が与えられる場合），then and must be interpreted as the displacement relative to the chord connecting the ends of the beam （はりの両端を結ぶ直線からの距離）as shown in Fig．10．3．

Figure 10．3 Settlement of continuous beam．Note that upward displacements are positive．

Elastic Supports（弾性支持）

－Frequently．Structures are mounted on supports in which the support movement depends on the magnitude of the reaction force．
－The simplest representation of this kind of support is shown in Fig． 10.4 and it is called elastic support in which settlement is a linear function of the reaction force．

（b）
Fig．10．4 Elastic support

- It is clear in this case that

$$
R_{1}=k_{S}\left(-\Delta_{1}\right) \quad \text { (10.12) }
$$

where k_{s} is the elastic spring constant.

- Substituting Eq.
(10.12) into Eq. (10.2), we obtain

$$
\begin{align*}
& \Delta_{10}+D_{11} R_{1}=-\frac{R_{1}}{k_{s}} \tag{10.13}\\
& \Delta_{10}+D_{11} R_{1}=\Delta_{1}=0 \\
& (10.2) \\
& \text { (a) }
\end{align*}
$$

(b)

(c)

Fig. 10.1

- From Eq. (10.13), we obtain

$$
R_{1}=\frac{-\Delta_{10}}{D_{11}+1 / k_{s}}
$$

(10.14)
,

- If the supports at points b and c of Fig. 10.2 (a) are provided by elastic supports as shown in Fig. 10.5,

Fig. $10.2^{(a)}$

Figure 10.5 Continuous beam on elastic supports.

Eq. (10.8) takes the form

$$
\begin{aligned}
& {\left[\begin{array}{cc}
D_{11}+1 / k_{s} & D_{12} \\
D_{21} & D_{22}+1 / k_{s}
\end{array}\right]\left\{\begin{array}{l}
R_{1} \\
R_{2}
\end{array}\right\}=\left\{\begin{array}{c}
-\Delta_{10} \\
-\Delta_{20}
\end{array}\right\}} \\
& {\left[\begin{array}{ll}
D_{11} & D_{12} \\
D_{21} & D_{22}
\end{array}\right]\left[\begin{array}{l}
R_{1} \\
R_{2}
\end{array}\right\}=\left\{\begin{array}{l}
\Delta_{1}-\Delta_{10} \\
\Delta_{2}-\Delta_{20}
\end{array}\right\} \text { (10.8) }}
\end{aligned}
$$

Figure 10.5 Continuous beam on elastic supports.

- This arrangement would correspond to the case in which R_{1} and R_{2} are provided by columns. Here, the elastic constants $\mathrm{k}_{\mathrm{s} 1}$ and $k_{s 2}$ would be a

Figure 10.5 Continuous beam on elastic supports. function of the properties of the columns

- Redundant reactions can be determined by solving Eq. (10.15), and any other response quantities are determined from Eq. (10.9).

$$
\begin{gather*}
{\left[\begin{array}{cc}
D_{11}+1 / k_{s} & D_{12} \\
D_{21} & D_{22}+1 / k_{S}
\end{array}\right]\left\{\begin{array}{l}
R_{1} \\
R_{2}
\end{array}\right\}=} \tag{10.15}\\
S=S_{0}+S_{1} R_{1}+S_{2} R_{2}
\end{gather*}
$$

EXAMPLE 10.4

Consider the continuous beam of Example 10.2, and determine the moment diagram for the following set of support settlements:

$$
\begin{array}{ll}
\Delta_{a}=-27.5 \mathrm{~mm} & \Delta_{b}=-47.5 \mathrm{~mm} \\
\Delta_{c}=-22 \mathrm{~mm} & \Delta_{d}=-10 \mathrm{~mm}
\end{array}
$$

Fig. $10.2^{(a)}$

Settlement pattern

$$
\begin{array}{ll}
\Delta_{a}=-27.5 \mathrm{~mm} & \Delta_{b}=-47.5 \mathrm{~mm} \\
\Delta_{c}=-22 \mathrm{~mm} & \Delta_{d}=-10 \mathrm{~mm}
\end{array}
$$

- The displacements of points b and c relative to the chord connecting points a and d are needed, thus

$$
\Delta_{1}=-0.025 m \quad \text { and } \quad \Delta_{2}=-0.007 m
$$

Structural Classification

- This structure is statically indeterminate to the second order. (same as Example 10.2)

Compatibility equations

$$
\left[\begin{array}{ll}
D_{11} & D_{12} \tag{10.8}\\
D_{21} & D_{22}
\end{array}\right]\left\{\begin{array}{l}
R_{1} \\
R_{2}
\end{array}\right\}=\left\{\begin{array}{l}
\Delta_{1}-\Delta_{10} \\
\Delta_{2}-\Delta_{20}
\end{array}\right\}
$$

Redundant reactions
In this case, $\Delta_{10}=\Delta_{20}=0$, and thus

$$
\left[\begin{array}{ll}
D_{11} & D_{12} \tag{a}\\
D_{21} & D_{22}
\end{array}\right]\left\{\begin{array}{l}
R_{1} \\
R_{2}
\end{array}\right\}=\left\{\begin{array}{l}
\Delta_{1} \\
\Delta_{2}
\end{array}\right\}
$$

- Because $\Delta_{1}=-0.025 m$ and $\Delta_{2}=-0.007 m$ substituting the appropriate displacement quantities, Eq. (a) becomes

$$
\frac{1}{E I}\left[\begin{array}{ll}
595.1 & 488.4 \tag{b}\\
488.1 & 595.1
\end{array}\right]\left\{\begin{array}{l}
R_{1} \\
R_{2}
\end{array}\right\}=\left\{\begin{array}{l}
-0.025 \\
-0.007
\end{array}\right\}
$$

$\left[\begin{array}{ll}D_{11} & D_{12} \\ D_{21} & D_{22}\end{array}\right]\left\{\begin{array}{l}R_{1} \\ R_{2}\end{array}\right\}=\left\{\begin{array}{l}\Delta_{1} \\ \Delta_{2}\end{array}\right\}$

-Solving Eq. (b) for the redundant reactions, we obtain

$$
\left\{\begin{array}{l}
R_{1} \\
R_{2}
\end{array}\right\}=E I\left\{\begin{array}{l}
-99.1 \times 10^{-6} \\
69.5 \times 10^{-6}
\end{array}\right\}\left(\frac{E I}{\mathrm{kN} \cdot \mathrm{~m}^{2}}\right)
$$

$$
\frac{1}{E I}\left[\begin{array}{ll}
595.1 & 488.4 \tag{b}\\
488.1 & 595.1
\end{array}\right]\left\{\begin{array}{l}
R_{1} \\
R_{2}
\end{array}\right\}=\left\{\begin{array}{l}
-0.025 \\
-0.007
\end{array}\right\}
$$

Final moments

$$
S=S_{0}+S_{1} R_{1}+S_{2} R_{2}
$$

- In this case, $\mathrm{M}_{0}=0$ (because no load is applied to the structure), and M_{1} and M_{2} are the moment diagram ordinates given in Example 10.2.

$$
\left\{\begin{array}{l}
M_{a} \\
M_{b} \\
M_{e} \\
M_{c} \\
M_{d}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
-7.14 \\
-5.00 \\
-2.86 \\
0
\end{array}\right\} \times-99.1 E I \times 10^{-6}+\left\{\begin{array}{l}
0 \\
-2.86 \\
-5.00 \\
-7.14 \\
0
\end{array}\right\} \times 69.5 E I \times 10^{-6}
$$

$$
=\left\{\begin{array}{l}
0 \\
508.8 \\
148.0 \\
-212.8 \\
0
\end{array}\right\} \times E I \times 10^{-6}(E I / \mathrm{m}) \mathrm{b} \quad \mathrm{e} \quad \mathrm{c} \quad \mathrm{~d}
$$

－Note that reaction forces and moments are dependent on the flexural stiffness（曲げ剛性）EI． －For a specific case of $\mathrm{EI}=3000 \times 10^{-6} \mathrm{~m}^{4}$ and $E=200 \times 10^{9} \mathrm{~Pa}$ ，we obtain

■

