Agent normal form of an extensive form game:

For each player, each of his information sets is a player.

Their payoffs are the same as the player's payoff.

EFTHPE in an extensive form

= NFTHPE in its agent normal form

NFTHPE in a normal form game $\Gamma = (N = \{0,1,...,I\}, \{\Delta(S_i)\}, \{u_i\})$ is a Nash eq. σ satisfying the following:

 \exists a sequence of perturbed games $\{\Gamma_{\epsilon k}\}_{k=1}^{\infty}$ that converges to

 Γ , i.e., $\lim_{k\to\infty} \varepsilon_i^k(s_i) = 0 \ \forall s_i \in S_i$, for which

 \exists a sequence of Nash eq. $\{\sigma^k\}_{k=1}^{\infty}$ such that $\lim_{k\to\infty} \sigma^k = \sigma$.

$$\begin{split} &\Gamma_{\epsilon k} = [N = \{0,1,\ldots,I\}, \ \{\Delta_{\epsilon k}(S_i)\}, \ \{u_i\}] \\ &\Delta_{\epsilon k}(S_i) = \{\sigma_i \mid \sigma_i(s_i) \geq \epsilon_i(s_i) \ \ \forall \ s_i \in S_i \ \ and \ \Sigma_{si \in Si} \ \sigma_i(s_i) = 1\} \end{split}$$

Subgame

2	1	r
L	<u>4</u> , <u>1</u>	<u>1</u> , 0
M	0, 0	0, 1

Nash eq. (L, 1) (unique)

SPNE ((NR-L), 1)

Normal form game

2	1	r		
NR-L	<u>4, 1</u>	1, 0		
NR-M	0, 0	0, <u>1</u>		
R-L	2, <u>2</u>	<u>2</u> , <u>2</u>		
R-M	2, <u>2</u>	<u>2</u> , <u>2</u>		

Nash eq. (NR-L, 1) (R-L, r), (R-M, r)

NFTHPE (NR-L, 1) (R-L, r), (R-M, r)

 $\varepsilon^{k} = (1/k^{2}, 1/k, 1/k, 1/k), \quad \sigma^{k} = (1/k^{2}, 1/k, 1-(1/k^{2}+2/k), 1/k)$

 $\lim_{k\to\infty} \sigma^k = \text{R-L}$ and r is b.r. to $\sigma^k \to (\text{R-L}, r)$ NETHPE similar for (R-M, r)

$$(R, L, r): 2$$
's payoff $(\epsilon, 1-\epsilon), (1-\epsilon', \epsilon'), (\underline{\epsilon'', 1-\epsilon''}) \rightarrow \epsilon((1-\epsilon')\epsilon'' + \epsilon'(1-\epsilon'')) + 2(1-\epsilon)$ $(1-\epsilon'', \epsilon'') \rightarrow \epsilon((1-\epsilon')(1-\epsilon'') + \epsilon'\epsilon'') + 2(1-\epsilon) \uparrow$ similar for $(R, M, 1)$ and (R, M, r)

		1	
		F	A
	O	0, 2	0, 2
E	I ₁	-1, <u>0</u>	<u>3</u> , <u>0</u>
	I ₂	-1, -1	2, <u>1</u>

Nash eq (SPNE) \rightarrow (O, F), (I₁, A) <u>A weakly dominates F</u>

((O,F),(1,0)) SE

F is sequentially rational given (1,0)

Let $\sigma_E^k = (1-(1/k+1/k^2), 1/k, 1/k^2)$. Then $\lim_{k\to\infty} \sigma_E^k = (1,0,0) = 0$ Furthermore belief is $((1/k)/(1/k+1/k^2), (1/k^2)/(1/k+1/k^2))$ = $(k/(k+1), 1/(k+1)) \to (1,0)$ (as $k \to \infty$)

	F	A
О	0, 2	0, 2
I_1	-1, <u>0</u>	<u>3</u> , <u>0</u>
I ₂	-1, -1	2, <u>1</u>

Nash eq (SPNE) \rightarrow (O, F), (I₁, A) <u>A weakly dominates F</u>

((O,F),(1,0)) SE but <u>not</u> EFTHPE

Let E's strategy (1- ε - ε ', ε , ε '). Then

I's payoffs \rightarrow F: $2(1-\epsilon-\epsilon')+0\epsilon+(-1)\epsilon'=2-2\epsilon-3\epsilon'$

A: $2(1-\epsilon-\epsilon')+0\epsilon+1\epsilon'=2-2\epsilon-1\epsilon' > \text{payoff under F}$

E

Forward Induction (motivation)

 $((O, F), (1, 0)) \rightarrow WPBE$ SE, EFTHPE

> I_2 strictly dominates I_1 -3 < -2, 1 < 3

E is rational

 \rightarrow never choose I_1 (choose I_2)

belief $(1,0) \rightarrow ???$

another $((I_2, A), (0, 1))$ OK!

Forward Induction (motivation)

 $((O, L), (1, 0)) \rightarrow WPBE$ SE, EFTHPE

- O strictly dominates S 0 > -6, -1
- E is rational
 - → never choose S choose O

belief $(1,0) \rightarrow ???$

another ((L, S), (0, 1)) OK!

Forward Induction (motivation)

Nash eq. (L, S), (S, L)

O strictly dominates S 0 > -6, -1

E never chooses I - S

Can eliminate a Nash eq. (S, L)

Bilateral Bargaining

Players 1, 2 determine the split of v

Player 1 makes an offer of a split (x, v-x) $(0 \le x \le v)$

Player 2 "accepts" \rightarrow 1 gets x; 2 gets v-x

or "rejects" \rightarrow 2 makes an offer of a split

.

A: accept, R: reject

SPE ?

Finite Horizon (T (odd) periods)

Period T

Unique SPE \rightarrow (($\delta^{T-1}v$, 0), A) discounted payoffs ($\delta^{T-1}v$, 0)

Unique SPE \rightarrow (($\delta^{T-1}v$, $\delta^{T-2}v - \delta^{T-1}v$), A) discounted payoffs ($\delta^{T-1}v$, $\delta^{T-2}v - \delta^{T-1}v$)

Finite Horizon (T (odd) periods)

Period T

Unique SPE \rightarrow (($\delta^{T-1}v$, 0), A) discounted payoffs ($\delta^{T-1}v$, 0)

Period T-1

Unique SPE
$$\rightarrow$$
 (($\delta^{T-1}v$, $\delta^{T-2}v - \delta^{T-1}v$), A)
discounted payoffs ($\delta^{T-1}v$, $\delta^{T-2}v - \delta^{T-1}v$)

Period T-2

Unique SPE
$$\rightarrow$$
 ($(\delta^{T-3}v - \delta^{T-2}v + \delta^{T-1}v, \delta^{T-2}v - \delta^{T-1}v), A)$
discounted payoffs ($(\delta^{T-3}v - \delta^{T-2}v + \delta^{T-1}v, \delta^{T-2}v - \delta^{T-1}v)$

Period 1

Unique SPE
$$\rightarrow$$
 (v $-\delta v + \delta^2 v - \cdots + \delta^{T-1}v$, $\delta v - \delta^2 v + \cdots - \delta^{T-1}v$), A)
Discounted payoffs (v $-\delta v + \delta^2 v - \cdots + \delta^{T-1}v$, $\delta v - \delta^2 v + \cdots - \delta^{T-1}v$)

Finite Horizon (T (odd) periods)

Period 1

Unique SPE
$$\rightarrow$$
 (v $-\delta v + \delta^2 v - \bullet \bullet + \delta^{T-1}v$, $\delta v - \delta^2 v + \bullet \bullet \bullet - \delta^{T-1}v$), A)

Discounted payoffs $(v - \delta v + \delta^2 v - \cdots + \delta^{T-1}v, \delta v - \delta^2 v + \cdots - \delta^{T-1}v)$

1's payoff =
$$v(1-\delta+\delta^2-\cdots+\delta^{T-1}) = v((1-(-\delta)^T)/(1+\delta)$$

= $v(1+\delta^T)/(1+\delta) = v*_1(T)$
 $\rightarrow v/(1+\delta)$ (as $T\rightarrow\infty$)
2's payoff = $v(1-(1+\delta^T)/(1+\delta)) = v(\delta-\delta^T)/(1+\delta)$
= $v*_2(T) = v - v*_1(T)$
 $\rightarrow v \delta/(1+\delta)$ (as $T\rightarrow\infty$)

Finite Horizon (T (even) periods)

Period 1

Unique SPE
$$\to$$
 (v $-\delta v_1^*(T-1)$, $\delta v_1^*(T-1)$), A)

Discounted payoffs $(v - \delta v_1^*(T-1), \delta v_1^*(T-1))$

1's payoff

$$v - \delta v(1+\delta^{T-1}) / (1+\delta) = v(1-\delta^{T}) / (1+\delta)$$

$$\rightarrow v / (1+\delta) \text{ (as } T \rightarrow \infty)$$

2's payoff

$$\delta \text{ v}(1+\delta^{\text{T-1}}) / (1+\delta) = \text{v}(\delta+\delta^{\text{T}}) / (1+\delta)$$

$$\rightarrow \delta \text{v} / (1+\delta) \quad (\text{as } T \rightarrow \infty)$$

Infinite Horizon

Stationary SPNE

Period 1

 $v_1^+ = max payoff to 1 in any SPNE$

2 can gain at most δv_1^+ if he rejects

2 will accept if he gets (more than or equal to) δv_1^+

1 gets at least $v - \delta v_1^+$

 v_1 = min payoff to 1 in any SPNE

$$\rightarrow v_1 = v - \delta v_1^+$$

Infinite Horizon

Period 1

$$\mathbf{v}_1 = \mathbf{v} - \delta \mathbf{v}_1^+$$

Show $v_1^+ \le v - \delta v_1^-$

2 can gain at least δv_1 if he rejects

2 will reject if he gets less than δv_1

1 gets at most $\underline{v - \delta v}_1$ when 2 accepts his offer

When 2 rejects, 2 gains at least δv_1 in period 2.

 \rightarrow 1 can gain at most $\delta v - \delta v_1$ (< $v - \delta v_1$)

Thus
$$v_1^+ \le v - \delta v_1^-$$

Infinite Horizon

Period 1

$$v_{1}^{-} = v - \delta v_{1}^{+} \qquad v_{1}^{+} \le v - \delta v_{1}^{-}$$

$$v_{1}^{+} \le v - \delta v_{1}^{-} = v_{1}^{-} + \delta v_{1}^{+} - \delta v_{1}^{-}$$

$$(1 - \delta)v_{1}^{+} \le (1 - \delta)v_{1}^{-} \rightarrow v_{1}^{+} \le v_{1}^{-} \rightarrow v_{1}^{+} = v_{1}^{-} = v_{1}^{0}$$

$$v_{1}^{0} = v - \delta v_{1}^{0} \rightarrow v_{1}^{0} = v / (1 + \delta)$$

$$v_{2}^{0} = v - v_{1}^{0} = v - v / (1 + \delta) = \delta v / (1 + \delta)$$

<u>SPNE</u> → a player making an offer offers $\delta v / (1+\delta)$ a player accepts an offer iff the offer $\geq \delta v / (1+\delta)$ (payoffs in finite horizon when $T \rightarrow \infty$)

Assignments

Problem Set 8 (due July 8) Exercise 9.B.7 (p.302)

Reading Assignment:

Text, Chapter 6, pp.167-183