
Weak Perfect Bayesian Nash Equilibrium (motivation)
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For  I :  in either decision point,  A  >  F   (－1 < 0,  －1 < 1)
→ I  should play “A”.

→ introduce   “belief”



Weak Perfect Bayesian Nash Eq  (definition)

Def. 9.C.1: μ = (μ(x)) x ∈ X is a system of beliefs (X: set of all nodes)

if     ∑x∈H μ (x) = 1    ∀ information set H

Def. 9.C.2: σ = (σ1, … , σI)  is sequentially rational at H given μ

if  E (ui(H) | H, μ, σi(H), σ－i(H)) ≥ E (ui(H) | H, μ, σ^ i(H), σ－i(H))  

∀ σ^ i(H)∈ Δ(Si(H))    (i(H) :  the player who moves at H)

E (ui(H) | H, μ, σi(H), σ－i(H)) : expected payoff to i(H) from H

if he/she is in H according to the prob. given by μ

and he/she plays σi(H), and rivals play σ－i(H). 

σ = (σ1, … , σI)  is sequentially rational given μ

if    ∀ H,  σ = (σ1, … , σI)  is sequential rational at H given μ



Weak Perfect Bayesian Nash Eq  (definition)

Def. 9.C.3.: (σ, μ)  is a weak perfect Bayesian Eq (WPBE) if

(i) σ is sequential rational given μ

(ii) μ is derived from  σ by Bayes’ rule if possible, i.e.,

∀ H  such that  Prob( H | σ) > 0

μ (x) = Prob (x | σ) / Prob ( H | σ) ∀x ∈H



WPBE  and  Nash Equilibrium

Prop. 9.C.1: σ is a Nash Equilibrium 

⇔ ∃ μ such that

(i)   σ is sequentially rational given  μ

at  H  with  Prob(H | σ) > 0.

(ii)  μ is derived from  σ by Bayes’ rule whenever possible.

Cor.: (σ, μ)  is a WPBE  → σ is a Nash Equilibrium



WPBE in Ex.9.C.1
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Nash eq  (SPNE)
→ (O, F),  (I1, A)

“F”  is not sequentially rational
for any belief

－1 < 0,  －1 < 1

WPBE → ((I1, A),  μ = (1,0))



WPBE in Ex.9.C.2
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WPBE in Ex.9.C.2

E2  plays  “A”  since  1, 4 >  0
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WPBE in Ex.9.C.2

E1  plays  “P”  since  4 > 2,  1 > -1  → P  >  E 

4, 1  >  0   → P  >  O
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WPBE in Ex.9.C.2

I’s belief  (0, 1, 0)  → I  plays  “A”  since  0  >  -2

Then  E1  plays  “E”  since  2  >  0.
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WPBE in Ex.9.C.2

WPBE :  ((P, E), (A), (A), (0, 1, 0))
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Note:  ((O, O), (D), (F))   Nash eq. (SPNE) 



WPBE in Ex.9.C.2
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((O, O), (D), (F))   Nash eq. (SPNE) 



WPBE in Ex.9.C.3

E’s strategy:  (σ0, σ1, σ2)
I’s strategy:   (σF, 1- σF) 
I’s belief: (μ1, 1- μ1)

γ > 0

(-1 < γ < 0 → Ex.9.C.2)O
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O 0,  2 0,   2
I1 -1, -1 3,  -2
I2 γ,  1 2,   1

I2 dominates  O  → σ0  =  0



WPBE in Ex.9.C.3
γ > 0
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σ0 = 0
σ1
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σF σF1- σF 1- σF

μ1 1- μ1

μ1 > 2/3  → F
μ1 < 2/3  → A
μ1 = 2/3  → F  or A

μ1 > 2/3

I  plays  F  (σF = 1)
→ E  plays  I2 since γ >  0 >  -1
→ μ = (0, 1)     C!  to   μ1 > 2/3

F → -1
A → -2µ1+(+1)(1-µ1)

= 1-3µ1

-1>1-3µ1 ↔ µ1>2/3



WPBE in Ex.9.C.3
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μ1 > 2/3  → F
μ1 < 2/3  → A
μ1 = 2/3  → F  or A

μ1 < 2/3

I  plays  A  (σF = 0)
→ E  plays  I1 since 3  >  2 >  0
→ μ = (1, 0)     C! to μ1 < 2/3

σ0 = 0



WPBE in Ex.9.C.3
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μ1 1- μ1
μ1 > 2/3  → F
μ1 < 2/3  → A
μ1 = 2/3  → F  or A

μ1 = 2/3

E :   σ1 = 2/3,  σ2 = 1/3
since σ0 = 0,    μ1 = 2/3   and   μ2 = 1/3

→ E :  I1 and I2 are indifferent under (σF,  1 - σF)
since σ1,  σ2 > 0

σ0 = 0



WPBE in Ex.9.C.3
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μ1 1- μ1
μ1 > 2/3  → F
μ1 < 2/3  → A
μ1 = 2/3  → F  or A

μ1 = 2/3
E :  I1 and I2 are indifferent under (σF,  1 - σF)  since σ1,  σ2 > 0.
E’s payoff :  I1 → - σF + 3(1-σF),   I2 → γσF +2(1-σF)

- σF + 3(1-σF)  = γσF +2(1-σF)  → σF = 1/(γ + 2)
I’s strategy :  ( 1/(γ + 2),  (γ + 1)/(γ + 2))

σ0 = 0



WPBE in Ex.9.C.3
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σF σF1- σF 1- σF

μ1 1- μ1

WPBE

((0, 2/3, 1/3), (1/(γ+2), (γ+1)/(γ+2)),  μ =(2/3, 1/3))



Sequential Equilibrium (motivation, Ex.9.C.4)
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(x,  ℓ,  (.5, .5), (.9, .1))  → WPBE

P2  has an arbitrary belief since his information set is 
not reached in equilibrium.   ? ? ?



Sequential Equilibrium (motivation, Ex.9.C.5)
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Nash eq  → (A, A)
((O,A),F)  is  not SPNE



Sequential Equilibrium (definition)

Def. 9.C.4:  (σ, μ) is a sequential equilibrium (SE) if

(i) σ is sequentially rational given μ ; 

(ii) ∃ a sequence of completely mixed strategies {σk}k=1
∞

with limk→∞σk = σ such that μ = limk→∞ μk

where μk is the set of beliefs derived from σk

using Bayes’ rule.



Sequential Equilibrium (Ex. 9.C.4)
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(x,  l,  (.5, .5), (.9, .1))  

→ WPBE

For any comp. mixed strategy  (σx, σy),  P2’s belief  =  (.5, .5)
P2’s choice must be  “r”  since  5  <  2×.5 + 10×.5 = 6
P1’s choice must be  “y”  since  2  <  5

SE  → (y,  r,  (.5, .5), (.5, .5))

.5σy/(.5σy+.5σy)=.5



Sequential Equilibrium (Ex. 9.C.5)

WPBE →  ((O,A), F, (1,0))
((I, A), A, (0,1))

SPNE  → ((I,A), A)
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SE  must contain  (A, A).   (→ next slide)
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Sequential Equilibrium (Ex. 9.C.5)
WPBE → ((O,A), F, (1,0))

((I,A),A,(0,1))
SPNE  → ((I,A), A)
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σE(O) = 1, σE(I) = 0,  σE(F) = 0, σE(A) = 1, σI(F) = 1, σI(A) = 0
→ σk

E(O) = 1- ε, σk
E(I) = ε,  σk

E(F) = ε’, σk
E(A) = 1- ε’, 

σk
I(F) = 1- ε’’, σk

I(A) = ε’’
Prob(H | σk) = σk

E(I) = ε,  Prob(x | σk) = σk
E(I) × σk

E(F) = ε×ε’
µk(x) = ε’  → µ(x) = 0 µk(y) = 1-ε’  → µ(y) = 1



Sequential Equilibrium (Ex. 9.C.5)
WPBE →  ((O,A), F, (1,0))

((I,A),A,(0,1))
SPNE  → ((I,A), A)
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σE(O) = 0, σE(I) = 1,  σE(F) = 0, σE(A) = 1, σI(F) = 0, σI(A) = 1
→ σk

E(O) = ε, σk
E(I) = 1- ε,  σk

E(F) = ε’, σk
E(A) = 1- ε’, 

σk
I(F) = ε”, σk

I(A) = 1- ε”
Prob(H | σk) = σk

E(I) = 1- ε,  Prob(x | σk) = σk
E(I) × σk

E(F) = (1-ε) ε’
µk(x) = ε’  → µ(x) = 0 µk(y) = 1- ε’  → µ(y) = 1



Sequential Equilibrium and SPNE

Prop. 9.C.2:  In every SE  (σ, μ),   σ is an  SPNE.



Assignments

Problem Set 8 (due July 1)
Exercises (pp.301-305)

9.C.1,  9.C.2,  9.C.6（only 9.C.3 part)

Reading Assignment:
Text, Chapter 9,  pp.292-300 
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