Weak Perfect Bayesian Nash Equilibrium (motivation)

For I: in either decision point, A > F (-1 < 0, -1 < 1)

 \rightarrow I should play "A".

 \rightarrow introduce "belief"

Weak Perfect Bayesian Nash Eq (definition)

<u>Def. 9.C.1</u>: $\mu = (\mu(x))_{x \in X}$ is a <u>system of beliefs</u> (X: set of all nodes) if $\sum_{x \in H} \mu(x) = 1 \quad \forall$ information set H <u>Def. 9.C.2</u>: $\sigma = (\sigma_1, \dots, \sigma_I)$ is <u>sequentially rational at H given μ </u> if $E(u_{i(H)} | H, \mu, \sigma_{i(H)}, \sigma_{-i(H)}) \ge E(u_{i(H)} | H, \mu, \sigma_{i(H)}, \sigma_{-i(H)})$ $\forall \sigma^{(H)} \in \Delta(S_{i(H)})$ (i(H) : the player who moves at H) E ($u_{i(H)} | H, \mu, \sigma_{i(H)}, \sigma_{-i(H)}$) : expected payoff to i(H) from H if he/she is in H according to the prob. given by μ and he/she plays $\sigma_{i(H)}$, and rivals play $\sigma_{-i(H)}$. $\sigma = (\sigma_1, \dots, \sigma_I)$ is sequentially rational given μ if \forall H, $\sigma = (\sigma_1, \dots, \sigma_I)$ is sequential rational at H given μ

Weak Perfect Bayesian Nash Eq (definition)

<u>Def. 9.C.3.</u>: (σ, μ) is a <u>weak perfect Bayesian Eq (WPBE)</u> if (i) σ is sequential rational given μ (ii) μ is derived from σ by Bayes' rule if possible, i.e., \forall H such that Prob(H | σ) > 0 $\mu(x) = Prob(x | \sigma) / Prob(H | \sigma) \forall x \in H$

WPBE and Nash Equilibrium

<u>Prop. 9.C.1</u>: σ is a Nash Equilibrium

- $\Leftrightarrow \exists \mu \text{ such that}$
 - (i) σ is sequentially rational given μ

at H with $Prob(H \mid \sigma) > 0$.

(ii) μ is derived from σ by Bayes' rule whenever possible.

<u>Cor.</u>: (σ, μ) is a WPBE $\rightarrow \sigma$ is a Nash Equilibrium

Nash eq (SPNE) \rightarrow (O, F), (I₁, A)

"F" is <u>not</u> sequentially rational for any belief -1 < 0, -1 < 1

WPBE
$$\rightarrow$$
 ((I₁, A), $\mu = (1,0)$)

E2 plays "A" since 1, 4 > 0

E1 plays "P" since 4 > 2, $1 > -1 \rightarrow P > E$ $4, 1 > 0 \rightarrow P > O$

I's belief $(0, 1, 0) \rightarrow I$ plays "A" since 0 > -2Then E1 plays "E" since 2 > 0.

WPBE : ((P, E), (A), (A), (0, 1, 0))

Note: ((O, O), (D), (F)) Nash eq. (SPNE)

((O, O), (D), (F)) Nash eq. (SPNE)

 $\gamma \ge 0$

$$(-1 < \gamma < 0 \rightarrow \text{Ex.9.C.2})$$

E's strategy: $(\sigma_0, \sigma_1, \sigma_2)$ I's strategy: $(\sigma_F, 1 - \sigma_F)$ I's belief: $(\mu_1, 1 - \mu_1)$

	F	А
Ο	0, 2	0, 2
I ₁	-1, -1	3, -2
I ₂	γ, 1	2, 1

 I_2 dominates $O \rightarrow \sigma_0 = 0$

 $\mu_1 > 2/3$

I plays F ($\sigma_F = 1$) \rightarrow E plays I₂ since $\gamma > 0 > -1$ $\rightarrow \mu = (0, 1)$ C! to $\mu_1 > 2/3$

$$\mu_1 > 2/3 \rightarrow F$$

$$\mu_1 < 2/3 \rightarrow A$$

$$\mu_1 = 2/3 \rightarrow F \text{ or } A$$

$$\begin{split} & E: \ I_1 \ \text{and} \ I_2 \ \text{are indifferent under} \ (\sigma_F, \ 1 - \sigma_F) \ \text{since} \ \sigma_1, \ \sigma_2 > 0. \\ & E's \ payoff: \ I_1 \rightarrow - \sigma_F + 3(1 - \sigma_F), \ I_2 \rightarrow \gamma \sigma_F + 2(1 - \sigma_F) \\ & - \sigma_F + 3(1 - \sigma_F) = \gamma \sigma_F + 2(1 - \sigma_F) \rightarrow \sigma_F = 1/(\gamma + 2) \\ & I's \ \text{strategy}: \ (\ 1/(\gamma + 2), \ (\gamma + 1)/(\gamma + 2)) \end{split}$$

WPBE

 $((0, 2/3, 1/3), (1/(\gamma+2), (\gamma+1)/(\gamma+2)), \mu = (2/3, 1/3))$

Sequential Equilibrium (motivation, Ex.9.C.4)

P2 has an <u>arbitrary</u> belief since his information set is <u>not</u> reached in equilibrium. ???

Sequential Equilibrium (motivation, Ex.9.C.5)

((O,A),F) is <u>not</u> SPNE

<u>Def. 9.C.4</u>: (σ, μ) is a <u>sequential equilibrium</u> (SE) if (i) σ is sequentially rational given μ ; (ii) \exists a sequence of completely mixed strategies $\{\sigma^k\}_{k=1}^{\infty}$ with $\lim_{k\to\infty} \sigma^k = \sigma$ such that $\mu = \lim_{k\to\infty} \mu^k$ where μ^k is the set of beliefs derived from σ^k using Bayes' rule.

Sequential Equilibrium (Ex. 9.C.4)

Sequential Equilibrium (Ex. 9.C.5)

SE must contain (A, A). (\rightarrow next slide)

Sequential Equilibrium (Ex. 9.C.5)

Sequential Equilibrium and SPNE

<u>Prop. 9.C.2</u>: In every SE (σ, μ) , σ is an SPNE.

Assignments

Problem Set 8 (due July 1) Exercises (pp.301-305) 9.C.1, 9.C.2, 9.C.6(only 9.C.3 part)

Reading Assignment:

Text, Chapter 9, pp.292-300