Example 9.B.1

E

 $E \rightarrow 0$ $I \rightarrow 2$ $Fi \qquad Ac$ $-3 \qquad 2$ $-1 \qquad 1$

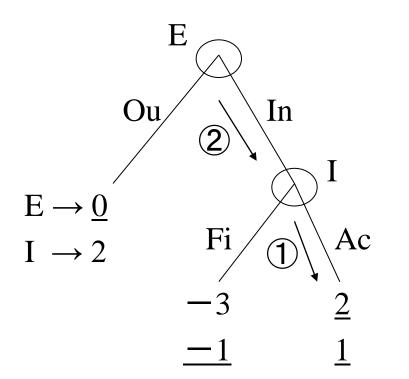
	I			
	Fi		Ac	
Ou	<u>0</u> ,	<u>2</u>	0,	<u>2</u>
In	-3,	-1	<u>2</u> ,	<u>1</u>

T

 $\frac{\text{Nash eq}}{\rightarrow} \text{ (in pure str.)}$ $\rightarrow \text{ (Ou, Fi), (In, Ac)}$

(Ou, Fi) \rightarrow rational ??? Fi : I's incredible threat If E really plays "In", I will play "Ac". (1 > -1)

Backward Induction



Backward induction

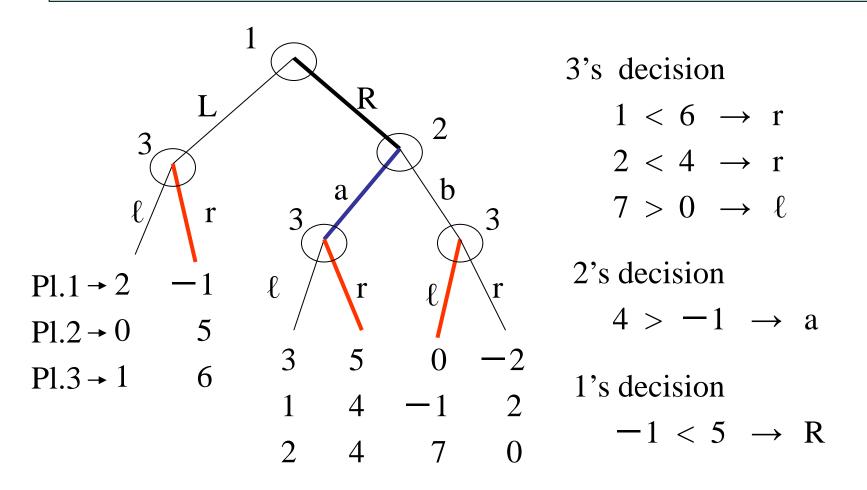
- (1) $1 > -1 \rightarrow I$ plays Ac
- (2) $2 > 0 \rightarrow E$ plays In

(In, Ac)

Games with perfect information

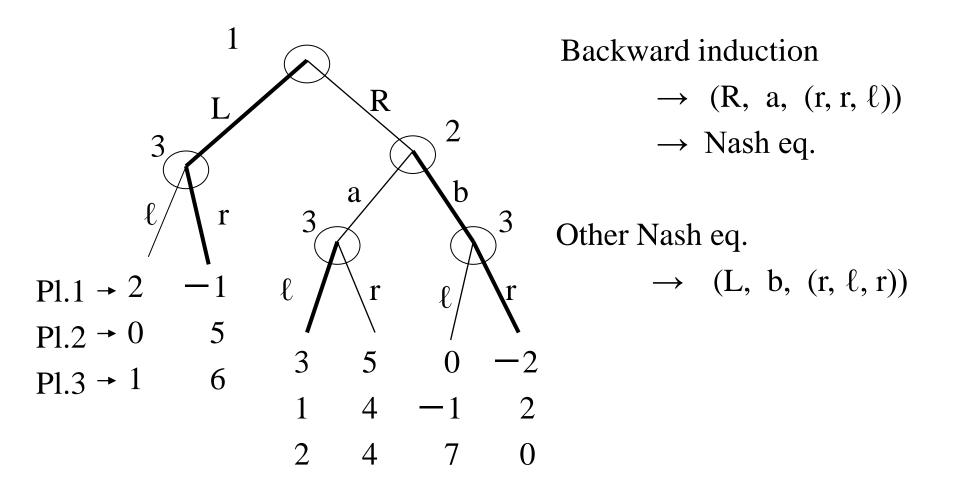
 \rightarrow every information set has <u>one</u> decision point.

Backward Induction (Example 9.B.2)



Backward induction \rightarrow (R, a, (r, r, ℓ)) \rightarrow Nash eq. Other Nash eq. \rightarrow (L, b, (r, ℓ , r))

Other Nash Equilibria (Example 9.B.2)



Nash Equilibria in Games with Perfect Information

<u>Prop. 9.B.1</u> (Zermelo's Theorem) : Every <u>finite</u> game w/ <u>perfect</u> <u>information</u> has a pure strategy Nash equilibrium produced by backward induction. If no player has the same payoffs, then \exists unique Nash eq. derived in this manner.

- <u>Pf</u>: a finite game w/ perfect information
 - \rightarrow backward induction is well-defined
 - no player has the same payoffs
 - \rightarrow a unique strategy combination

Let $(\sigma_1, \dots, \sigma_I)$ be the strategy combination derived thru backward induction

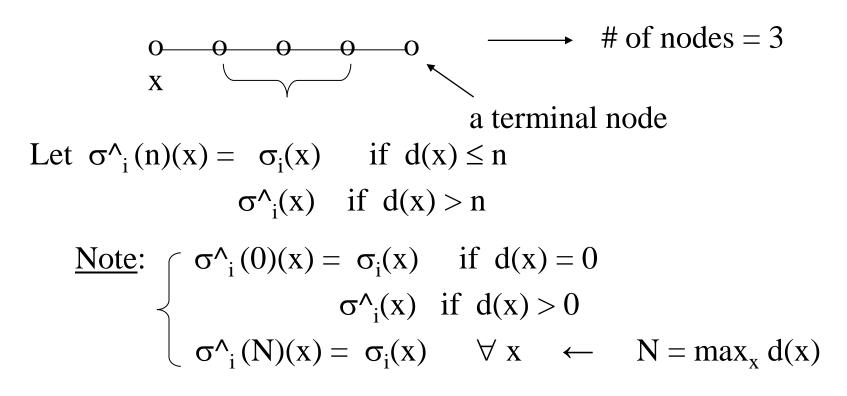
Show $(\sigma_1, \ldots, \sigma_I)$ is a Nash eq.

Proof

Show
$$\forall i \ \forall \sigma_i^{} \quad u_i(\sigma_i, \sigma_{-i}) \geq u_i(\sigma_i^{}, \sigma_{-i})$$

Take any σ_i^{n} and define i's strategy $\sigma_i^{n}(n)$ as follows. For each node x,

let $d(x) = \max \#$ of nodes between x and terminal nodes



Proof

Show $u_i(\sigma_i^{(N)} = \sigma_i, \sigma_{-i}) \ge u_i(\sigma_i^{(N)}, \sigma_{-i})$: induction on n

(1)
$$n = 0$$
: $\sigma_{i}^{(0)}(x) = \sigma_{i}(x)$ if $d(x) = 0$
 $\sigma_{i}^{(x)}$ if $d(x) > 0$

 $\sigma_i(x)$ chooses an alternative at x that max i's payoff

$$\rightarrow u_i \left(\sigma_i^{(0)}, \sigma_{-i} \right) \geq u_i \left(\sigma_i^{(0)}, \sigma_{-i} \right)$$

(2) Suppose for n = k-1 $u_i (\sigma_i^{(k-1)}, \sigma_{-i}) \ge u_i (\sigma_i^{(k-1)}, \sigma_{-i})$ holds.

(3) For n = k, <u>show</u> $u_i(\sigma_i^{(k)}, \sigma_{-i}) \ge u_i(\sigma_i^{(k)}, \sigma_{-i})$

Proof

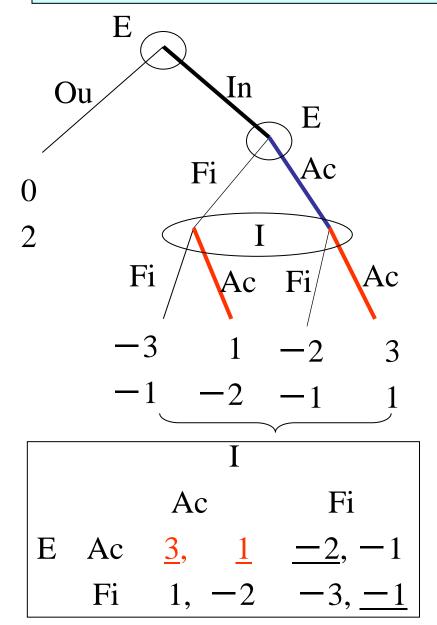
(2) Suppose for n = k - 1, $u_i (\sigma^{\wedge}(k-1), \sigma_{-i}) \ge u_i (\sigma^{\wedge}_i, \sigma_{-i})$ (1) (3) For n = k, <u>show</u> $u_i (\sigma^{\wedge}(k), \sigma_{-i}) \ge u_i (\sigma^{\wedge}_i, \sigma_{-i})$ (2) d(x)=k d(x')=k-1 x' $\sigma^{\wedge}(k)(x) = \sigma_i(x')$ $\sigma_i(x'') \cdots$

 $\sigma_{i}^{(k-1)(x)} = \sigma_{i}^{(x)} \qquad \sigma_{i}^{(k-1)(x')} = \sigma_{i}^{(x')} \qquad \sigma_{i}^{(x'')}$

By the definition of σ_i , $u_i (\sigma_i^{(k)}, \sigma_{-i}) \ge u_i (\sigma_i^{(k-1)}, \sigma_{-i})$ 3 (1) and (3) \rightarrow (2) holds.

 $\label{eq:eventually} \begin{array}{lll} u_i(\sigma_i, \ \sigma_{\text{-}i}) \ = \ u_i \ (\sigma^{\wedge}_i(N), \ \sigma_{\text{-}i} \) \ \geq \ u_i \ (\sigma^{\wedge}_i, \ \sigma_{\text{-}i} \) \quad Q.E.D. \end{array}$

A Game with Imperfect Information (Example 9.B.3)



		Ι				
		Ac	Fi			
	Ou Ac	0, <u>2</u>	<u>0</u> , <u>2</u>			
E	Ou Fi	0, <u>2</u>	<u>0</u> , <u>2</u>			
	In Ac	<u>3, 1</u>	-2, -1			
	In Fi	1, -2	-3, <u>-1</u>			
	Nash eq. ((Ou Ac), Fi),					
	((Ou, Fi), Fi),					
	<u>((In, Ac), Ac)</u>					

Nash eq. (Ac, Ac)

<u>Defn. 9.B.1</u>: A subgame of an extensive form game is a subset of the game having the following properties:

- (1) It begins with an information set containing only one node.
- (2) It contains all successors of the node and no other node.
- (3) For each successor, any node, in the information set that contains the successor, is in the subset.

<u>Note</u>: (1) whole game \rightarrow a subgame

- (2) Fig.9.B.1 \rightarrow two subgames
- (3) Fig.9.B.3 \rightarrow five subgames

(games with perfect information

 \rightarrow each node initiates a subgame)

- (4) Fig.9.B.4 \rightarrow two subgames
- (5) Fig.9.B.5 \rightarrow parts of the game that are not subgames

<u>Defn. 9.B.2</u>: A strategy profile $\sigma = (\sigma_1, \dots, \sigma_I)$ of an extensive form game is <u>SPNE</u> if it induces a Nash equilibrium in every subgame of the game.

<u>Note</u>: (1) SPNE \rightarrow Nash equilibrium (whole game is a subgame.)

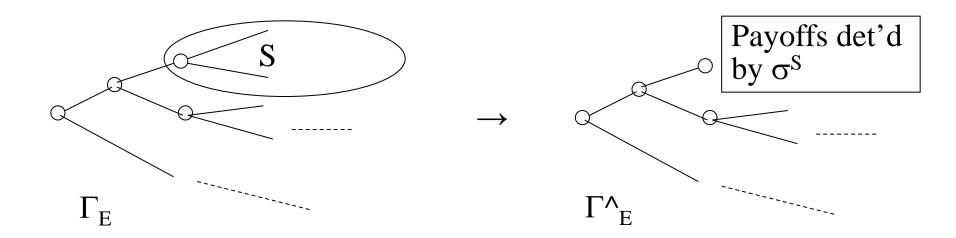
- (2) SPNE \rightarrow SPNE of each subgame
- (3) Fig.9.B.1 \rightarrow (In, Ac)
- (4) Fig.9.B.2 \rightarrow (R, a, (r, r, ℓ))
- (5) Fig.9.B.3 \rightarrow ((In, Ac), Ac)

<u>Prop. 9.B.2</u> : Every <u>finite</u> game w/ <u>perfect information</u> has a pure strategy SPNE. If no player has the same payoffs, then \exists unique SPNE

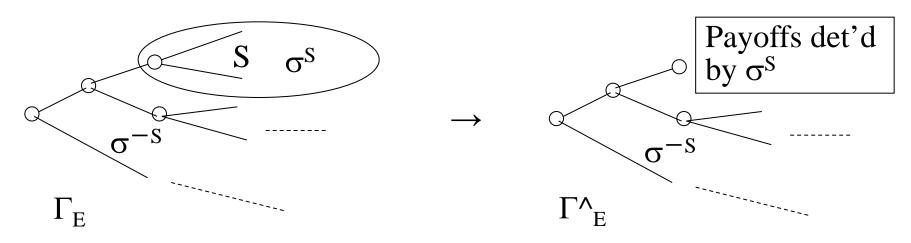
<u>Pf</u>: clear from Prop. 9.B.1 and the definition of SPNE

Properties of SPNE (Prop. 9.B.3)

- <u>Prop. 9.B.3</u> : Γ_E : an extensive form game, S : a subgame
- σ^{s} : an SPNE of subgame S
- Γ_{E}^{*} : the reduced game replacing the subgame S by a terminal node with payoff determined by σ^{S}
- (1) σ : an SPNE of Γ_E s.t. restriction of σ to S is σ^S .
 - σ^{-S} , the restriction of σ to outside S $\rightarrow \sigma^{-S}$ is an SPNE of Γ^{A}_{E}
- (2) σ^{\wedge} : an SPNE of $\Gamma^{\wedge}_{E} \rightarrow (\sigma^{\wedge}, \sigma^{S})$ is an SPNE of Γ_{E}



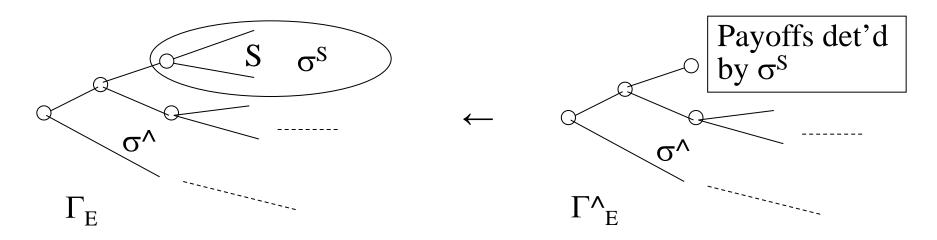
Proof of Prop. 9.B.3



(1) σ : an SPNE of $\Gamma_E = \sigma^S$: restriction of σ to S σ^{-S} : restriction of σ to outside S $\rightarrow \sigma^{-S}$ is an SPNE of Γ^{\wedge}_E

<u>Pf</u>: Suppose σ^{-S} is not an SPNE of Γ_{E}^{A} . Then \exists a subgame T of Γ_{E}^{A} s.t. σ^{T} is <u>not</u> a Nash eq. in Γ_{E}^{A} . \exists i who can increase his payoff by deviating from σ^{T} in Γ_{E}^{A} . i can increase his payoff in Γ_{E} by the same deviation.

Proof of Prop. 9.B.3



(2) σ^{\wedge} : an SPNE of $\Gamma^{\wedge}_{E} \rightarrow (\sigma^{\wedge}, \sigma^{S})$ is and SPNE of Γ_{E}

<u>Pf</u>: Let $\sigma' = (\sigma^{\Lambda}, \sigma^{S})$. Take any subgame T. If $T \subseteq S$ or $T \subseteq \neg S$, then σ'^{T} is a Nash eq. of T.

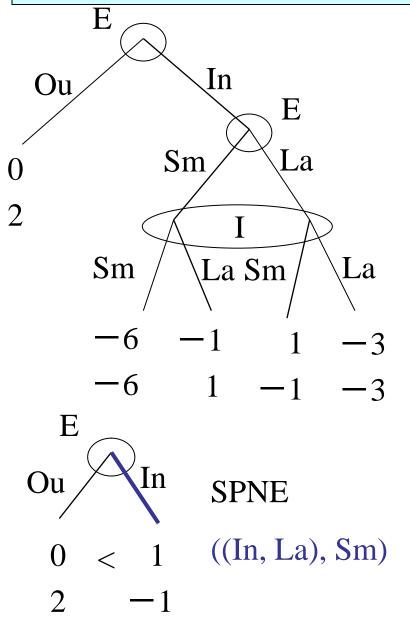
If not, T contains S.

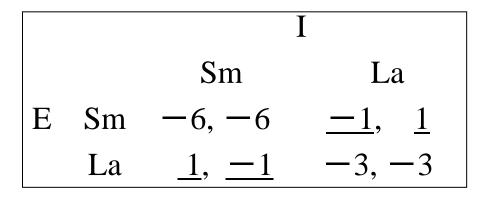
Suppose $\exists i$ who can gain more by deviating from σ'_i . Since σ^s is an SPNE of S, i changes his choice outside S. Then i can gain more also in Γ^{A}_{E} . C! Q.E.D.

Generalized Backward Induction

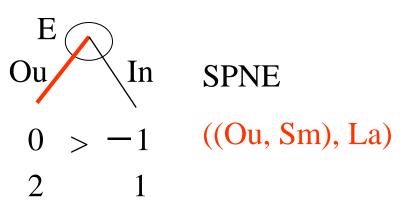
- 1 Start at the end of the game tree. Identify Nash eq. in each of the final subgames.
- 2 Select one Nash eq. in each of the final subgames, and derive the reduced extensive form game by replacing each subgame by a terminal node with payoffs of the selected Nash eq.
- 3 Repeat this procedure until every move in the original extensive form game is determined.

Example 9.B.4





Nash eq. (La, Sm), (Sm, La)



Prop. 9.B.4

 $\begin{array}{l} \underline{\operatorname{Prop.} 9.B.4}: \ \Gamma^t_E: \text{simultaneous move game, } t=1,\,2,\,\ldots\,,T.\\ \Gamma_E: \text{successive play of } \Gamma^t_E\\ \text{Each player's payoff} = \text{sum of his payoffs in T periods}\\ \text{Each player knows others' choices just after each game is played.}\\ \text{If } \exists \text{ a unique Nash equilibrium } \sigma^t \text{ in } \Gamma^t_E,\\ \text{ then there is a unique SPNE in } \Gamma_E\\ \text{ in which each player i plays } \sigma^t_i \text{ in } t=1,\,2,\,\ldots\,,T. \end{array}$

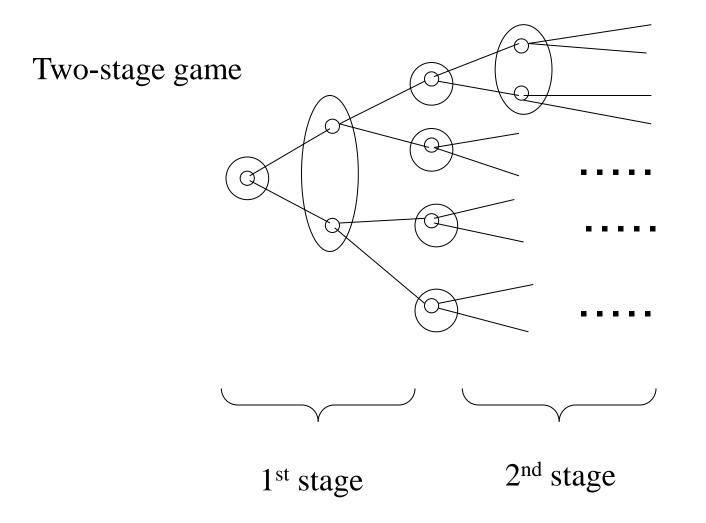
<u>Pf:</u> Induction on T. If T = 1, clear.

Suppose the claim is true for all $T \le n-1$.

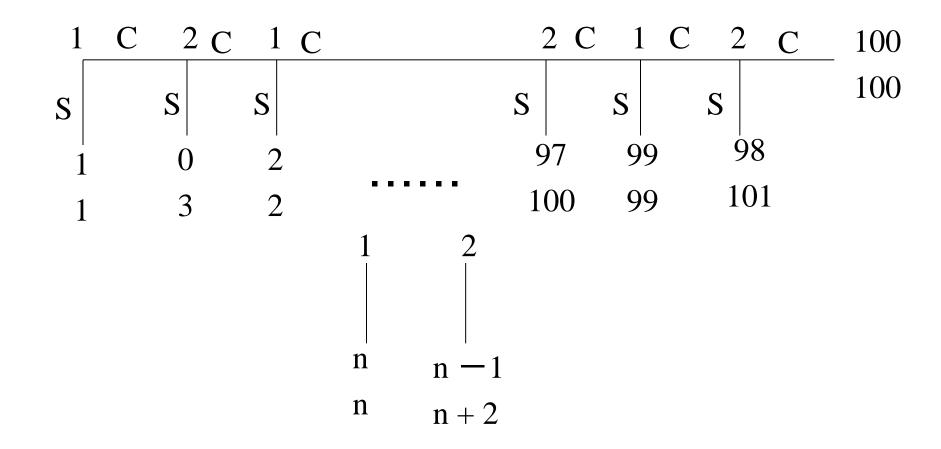
Show the claim holds when T = n.

After the first period is over, we have n-1 period game.

Thus from the induction hypothesis, the conclusion easily follows.



Centipede Game



SPNE (S, S, ..., S), (S, S, ..., S)

Assignments

Problem Set 7 (due June 24) Exercises (pp.301-305) 9.B.3, 9.B.6, 9.B.9, 9.B.10

Reading Assignment:

Text, Chapter 9, pp.282-291