
Nash equilibrium

Definition 8.D.1: (Nash equilibrium)
s = (s1, … , sI) is a Nash equilibrium
in ΓΝ = [N={0,1,…,I}, {Si}, {ui}]

if  ∀ i= 1, … ,I,  ui(si, s-i) ≥ ui(s’i, s-i) ∀ s’i ∈ Si.

Note: Nash eq. → each player’s strategy is a best response to
the strategies actually played by her rivals 

Rationalizable strategies 
→ best response to some justified strategies of the rivals



Nash equilibrium

Example 8.D.1: l m r

U 5, 3 0, 4 3, 5

M 4, 0 5, 5 4, 0

D 3, 5 0, 4 5, 3

_  denotes a best response
(M, m) is the unique Nash eq.

Example 8.D.2:
b1 b2 b3 b4

a1 0, 7 2, 5 7, 0 0, 1
a2 5, 2 3, 3 5, 2 0, 1
a3 7, 0 2, 5 0, 7 0, 1
a4 0, 0 0, -2 0, 0 10, -1

(a2, b2) is the unique Nash eq.

rationalizable strategies  →
{a1, a2, a3}  for 1,  
{b1, b2, b3}  for 2

Note:  Every strategy in Nash eq.  → rationalizable



Nash equilibrium

Example 8.D.3: E C

E 100, 100 0, 0

C 0, 0 100, 100

_  denotes a best response
(E, E), (C, C) are Nash eq.

Best-response correspondence
bi :  S-i → Si

bi(s-i) = {si ∈ Si | ui(si, s-i) ≥ ui(s’i, s-i)  ∀ s’i ∈ Si}

Nash eq. theory says nothing which eq. we should expect.

s = (s1, … , sI) is a Nash equilibrium
in ΓΝ = [N={0,1,…,I},{Si}, {ui}]

iff   si ∈ bi(s-i) ∀ i= 1, … ,I 



Nash equilibrium － Discussion

Why should we concern ourselves with the concept of Nash eq. ?
How do players reach a Nash eq. ?

1.  Nash eq. as a consequence of rational inference
2.  Nash eq. as a necessary condition 

if there is a unique predicted outcome
3.  Focal points
4.  Nash eq. as a self-enforcing agreement
5.  Nash eq. as a stable social convention



Mixed Strategy Nash equilibrium

H T

H -1, +1 +1, -1

T +1, -1 -1, +1

Example 8.D.4 :
((1/2, 1/2), (1/2, 1/2)) is a unique Nash eq.
1’s payoff:  H  -1×1/2 + 1×1/2 = 0

T  1×1/2 + (-1)×1/2 = 0
same for 2

Definition 8.D.1: 
σ = (σ 1, … , σ I) is a Nash equilibrium

in ΓΝ = [N={0,1,…,I}, {∆(Si)}, {ui}]
if  ∀ i= 1, … ,I,  ui(σ i, σ -i) ≥ ui(σ’i, σ -i) ∀ σ’ i ∈ ∆ (Si).



Mixed Strategy Nash equilibrium

Pf : →) First show that ∀ i= 1, … ,I
ui(si, σ-i) ≥ ui(s’i, σ-i)  ∀ si ∈ S+

i, ∀ s’ i ∈ Si
Suppose not, i.e., ∃ i, si ∈ S+

i, s’i ∈ Si   s.t.  ui(s’i, σ-i) > ui(si, σ-i). 
Let σ’i be s.t.

σ’i(s”i) = σi(s”i)          for  s”i  ≠ si, s’i
= σi(s’i) + σi(si) for  s”i = s’i
=  0                 for  s”i = si

Then ui(σ’i, σ-i) > ui(σi, σ-i), contradicting that σ is a Nash eq. 

Proposition 8.D.1:  S+
i ⊆ Si set of pure str. played with positive prob.

in  σ = (σ 1, … , σ I).   σ is a Nash eq. in 
ΓN = [N={0,1,…,I}, {∆(Si)}, {ui}]   iff ∀ i= 1, … ,I, 

(i)  ui(si, σ-i) = ui(s’i, σ-i)  ∀ si, s’ i ∈ S+
i

(ii) ui(si, σ-i) ≥ ui(s’i, σ-i)  ∀ si ∈ S+
i, ∀ s’ i ∉ S+

i



Mixed Strategy Nash equilibrium

Pf : →) Next show that ∀ i= 1, … ,I
ui(si, σ-i) = ui(s’i, σ-i)  ∀ si , s’i ∈ S+

i,
Suppose not, i.e., ∃ i, si , s’i∈ S+

i s.t.  ui(s’i, σ-i) > ui(si, σ-i).
(Remember: have shown ui(si, σ-i) ≥ ui(s’i, σ-i)  ∀ si ∈ S+

i, ∀ s’ i ∈ Si)
Let σ’i be s.t.

σ’i(s”i) = σi(s”i)          for  s”i  ≠ si, s’i
= σi(s’i) + σi(si) for  s”i = s’i
=  0                 for  s”i = si

Then ui(σ’i, σ-i) > ui(σi, σ-i), contradicting that σ is a Nash eq. 

Proposition 8.D.1:  S+
i ⊆ Si set of pure str. played with positive prob.

in  σ = (σ 1, … , σ I).   σ is a Nash eq. in 
ΓN = [N={0,1,…,I}, {∆(Si)}, {ui}]   iff ∀ i= 1, … ,I, 

(i)  ui(si, σ-i) = ui(s’i, σ-i)  ∀ si, s’ i ∈ S+
i

(ii) ui(si, σ-i) ≥ ui(s’i, σ-i)  ∀ si ∈ S+
i, ∀ s’ i ∉ S+

i



Mixed Strategy Nash equilibrium

Pf : ←) Suppose that σ is not a Nash eq. . 
Then ∃ i, σ’i ∈ ∆(Si)  s.t.  ui (σ’i, σ-i) > ui (σi, σ-i). 
Then ∃ s’i ∈ Si s.t.  ui (s’i, σ-i) > ui (σi, σ-i)  with  σ’i(s’i) > 0. 
From (i),  ui(si, σ-i) = ui(σi, σ-i) for all si ∈ S+

i. 
Thus s’i ∉S+

i,  contradicting (ii). 

Proposition 8.D.1:  S+
i ⊆ Si set of pure str. played with positive prob.

in  σ = (σ 1, … , σ I). σ is a Nash eq. in 
ΓN = [N={0,1,…,I}, {∆(Si)}, {ui}]  iff    ∀ i= 1, … ,I,     

(i)  ui(si, σ-i) = ui(s’i, σ-i)  ∀ si, s’ i ∈ S+
i

(ii) ui(si, σ-i) ≥ ui(s’i, σ-i)  ∀ si ∈ S+
i, ∀ s’ i ∉ S+

i

Note:  To see a Nash eq. or not, 
it suffices to check deviations to pure strategies.



Mixed Strategy Nash equilibrium

Pf :   ←) clear.

→)  Since  s  is a Nash eq. of ΓN = [N={0,1,…,I}, {Si}, {ui}],

∀ i= 1, … ,I   ui(si, s-i) ≥ ui(s’i, s-i)   ∀ s’ i ∉ S+
i

Thus (i), (ii) in Proposition 8.D.1 trivially hold since S+
i = {si}

Thus by Prop.8.D.1,

s is a Nash eq. of  Γ’N = [N={0,1,…,I,} {∆(Si)}, {ui}].

Corollary 8.D.1:
s = (s1, … , sI) is a Nash eq. of   ΓN = [N={0,1,…,I}, {Si}, {ui}] 
iff  it  is a Nash eq. of Γ’N = [N={0,1,…,I,} {∆(Si)}, {ui}]



Mixed Strategy Nash equilibrium

Example 8.D.5:

E C

E 1000, 1000 0, 0

C 0, 0 100, 100

S’s mixed strategy: (σs, 1-σs)

T:  play E → 1000σs
play C   → 100(1-σs)

Similarly, T’s strategy (1/11, 10/11)

S

T

Suppose T’s mixed strategy (σT, 1-σT) satisfies 0 < σT < 1.
Then S+

T={E,C}.
Prop. 8.D.1  → 1000σs=100(1-σs)  

→ σs = 1/11  → S’s mixed strategy (1/11, 10/11)

Nash eq.  ((1/11, 10/11), (1/11, 10/11))



Mixed Strategy ???

What is a mixed strategy ?
It just makes the rival indifferent over his strategies 
(The player has no preference over the probabilities.)

Is a mixed strategy useful ?
1 Players have a pure strategy that gives the same payoff.

→ why randomize them ?
→ Players may not actually randomize; but they make

definite choices that are affected by signals.

2 Stability of mixed strategy Nash eq.
players do not have an incentive to use the exact probability

→ may not arise as a social convention,  
but as a self-enforcing agreement  



Correlated Strategies

Correlated equilibrium

Example 8.D.5:
E C

E 1000, 1000 0, 0

C 0, 0 100, 100

Public signal θ ∈ [0,1]
θ ≥ 1/2   → both play E 
θ < 1/2   → both play C

This is equilibrium.
If T (S) follows, then S (T) has no incentive to deviate. 

S

T



Existence of  Nash equilibrium

Proposition 8.D.2:
ΓN = [N={0,1,…,I}, {∆(Si)}, {ui}] in which S1, … , SI have a finite
number of elements has a mixed strategy Nash eq.

Proposition 8.D.3:
A Nash eq. exists in ΓN = [N={0,1,…,I}, {Si}, {ui}]  if  ∀i=1, … , I 
(i)  Si is a nonempty, convex, and compact subset of ℜm,  and 
(ii) ui(s1, … , sI) is continuous in (s1, … , sI)  and quasi-concave in si.

ui(s1, … , sI) is quasi-concave in si
if  ∀s’i, s”i, α∈[0,1]    

ui(αs’i+(1-α)s”i, s-i) ≥ min (ui(s’i, s-i), ui(s”i, s-i))



Assignments

Problem Set 4  (due May 13):  
Exercises (pp.262-266):

1.   8.D.3,  8.D.4,  8.D.5, 8.D.9
2.   Read (i) – (v) on the concept of Nash equilibrium 

(pp.248-249) and summarize them.

Reading Assignments:  
Text Chapter 8, pp.253-257
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