
Dominant Strategy

Definition 8.B.1: (strictly dominant strategy)
In ΓN = [N = {0,1,…,I}, {Si}, {ui}],  
si ∈Si is a strictly dominant strategy for  i  

if  ui(si, s-i) > ui(s’i, s-i)   ∀s’i ∈ Si - {si},  ∀ s-i ∈ S-i.

DC C
DC -2, -2 -10, -1
C -1, -10 -5, -5

Player 1

Player 2Prisoner’s Dilemma 

Player 1:  “Confess” is the best strategy regardless of what 2 plays.
Player 2:  Same.    → strictly dominant strategy



Dominated Strategy

Definition 8.B.2: (strictly dominated strategy)
Let si, s’i ∈ Si. s’i  strictly dominates  si if

ui(s’i, s-i) > ui(si, s-i) ∀ s-i ∈ S-i.
If there exists at least one  s’i that strictly dominates si, 

si is said to be strictly dominated.

Note: si is a strictly dominant strategy if it strictly dominates 

all other strategies in Si.

Example 8.B.1:
1:  U, M strictly dominates D
1 can eliminate  D.

L R
U 1, -1 -1,  1

M -1,  1 1, -1

D -2,  5 -3,  2

Player 1

Player 2

2:  no domination



Weak Dominant Strategy

Definition 8.B.3: 
Let si, s’i ∈ Si. s’i  weakly dominates  si if

ui(s’i, s-i) ≥ ui(si, s-i)   ∀ s-i ∈ S-i

ui(s’i, s-i) > ui(si, s-i)   ∃ s-i ∈ S-i

If there exists at least one  s’i that weakly dominates si, 
si is said to be weakly dominated.

si is a weakly dominant strategy 
if it weakly dominates all other strategies in Si.

L R
U 5, 1 4, 0
M 6, 0 3, 1
D 6, 4 4, 4

Player 1

Player 2

Example 8.B.2:
1:  D weakly dominates U, M
2:  no weak domination

1 can eliminate U and M  ??? 



Iterated Deletion 

DC C
DC 0,   -2 -10, -1
C -1, -10 -5, -5Player 1

Player 2Example 8.B.3:
1 is DA’s brother and 
allow 1 to go free if both play DC.

No domination for 1.
2: C strictly dominates DC.

Payoffs and rationality of both players are common knowledge
→ 1 believes 2 eliminates  DC  and plays  C

(1 knows  2’s  payoffs and rationality)
→ 1 plays  C  since  -5 > -10.  → (C, C) 

Further iteration of deletion is possible.

Note: Order of deletion does not affect the final outcome.



Iterated Deletion of Weakly Dominated  Strategies

Deletion of weakly dominated strategies 
→  other players  play all strategies with positive probability
→ C!  to  iterated deletion

Delete M → L w-dom R → (D, L)

L R
U 5, 1 4, 0
M 6, 0 3, 1
D 6, 4 4, 4

Example 8.B.2:
1:  D weakly dominates U, M
2:  no weak domination

L R
U 5, 1 4, 0
D 6, 4 4, 4Delete U → R w-dom L → (D, R)

L R
M 6, 0 3, 1
D 6, 4 4, 4

(Delete M & U  → (D, L)  or  (D, R))



Domination with Mixed Strategies
Definition 8.B.4: (strictly dominated strategy with mixed strategies)
Let σi, σ’i ∈ ∆(Si). σ’i  strictly dominates  σ i if

ui(σ’i, σ -i) > ui(σ i, σ -i)  ∀ σ-i ∈ Πj≠i  ∆(Sj).
σi is said to be strictly dominated 

if there exists at least one σ’i that strictly dominates σ i, 
σi is a strictly dominant strategy 

if it strictly dominates all other strategies in ∆(Si).

L R
U 10, 1 0, 4
M 4, 2 4, 3
D 0, 5 10, 2

Pl. 1

Pl. 2
No domination for 1 and  2 

in pure strategies.

(1/2, 0, 1/2)  strictly dominates M.



Domination with Mixed Strategies

Proposition 8.B.1: 
si ∈Si is strictly dominated in ΓN = [N = {0,1,…,I}, {∆(Si)}, {ui}]  iff 
there exists σ’i ∈ ∆(Si)  such that 

ui(σ’i, s -i) > ui(s i, s-i)  ∀ s-i ∈ S-i = Πj≠i Sj.

Note: ui(σ’i, σ-i) > ui(σ i, σ-i)  ∀ σ-i ∈ Πj≠i ∆(Sj)

iff   ui(σ’i, s-i) > ui(σi, s-i)  ∀ s-i ∈ Πj≠i Sj.

Delete all strictly dominated pure strategies in ΓN. 

How do we eliminate mixed strategies ?



Domination with Mixed Strategies

Exercise 8.B.6: 
si ∈Si is strictly dominated in ΓN = [N = {0,1,…,I}, {∆(Si)}, {ui}]  

⇒ any strategy that plays si with positive probability is 
also strictly dominated.

Can eliminate some dominated mixed strategies.

Can eliminate further.

L R
U 10, 1 0, 4
M 6, 2 6, 3
D 0, 5 10, 2

Pl. 1

Pl. 2
Neither U nor D strictly dominated;
But  (1/2,0,1/2) is strictly dominated 
By M.



Domination with Mixed Strategies

Elimination of dominated strategies in 
ΓN = [N={0,1,…,I}, {∆(Si)}, {ui}] 

1. Iteratively eliminate strictly dominated pure strategies.
2. Let Su

i be the remaining pure strategy set of I
3. Eliminate strictly dominated mixed strategies in ∆(Su

i)



Rationalizable Strategies

Definition 8.C.1: 
In ΓN=[N={0,1,…,I}, {∆(Si)}, {ui}] , σi ∈∆(Si ) is a best response

for  i  to  σ-i if ui(σi, σ-i) ≥ ui(σ’i, σ-i)   ∀σ’i ∈ ∆(Si).
Strategy  σi  is never a best response

if there is no  σ-i to which  σi is a best response.

Note:  Strictly dominated → never be a best response
never be a best response even if not strictly dominated 



Rationalizable Strategies

b4 is not strictly dominated.
But  b4 is never the best response.

a1 → b1
a2 → b2
a3 → b3
a4 → b1,  b3

b1 b2 b3 b4

a1 0, 7 2, 5 7, 0 0, 1
a2 5, 2 3, 3 5, 2 0, 1
a3 7, 0 2, 5 0, 7 0, 1
a4 0, 0 0, -2 0, 0 10, -1

Pl. 2

Pl. 1

_  denotes the best response



Rationalizable Strategies

Definition 8.C.2: 
In ΓN=[{0,1,…,I}, {∆(Si)}, {ui}] , the strategies in ∆(Si) that
survives the iterated deletion of strategies that are never be a best
response are called i’s rationalizable strategies. 

Iterated elimination of “never be a best response” strategies

Note:  Order of deletion does not affect 



Rationalizable Strategies

b4 is never a best response  → eliminate  b4
→ a4 is never a best response  → eliminate a4

rationalizable strategies  → {a1, a2, a3}  for 1,  {b1, b2, b3} for 2

b1 b2 b3 b4

a1 0, 7 2, 5 7, 0 0, 1
a2 5, 2 3, 3 5, 2 0, 1
a3 7, 0 2, 5 0, 7 0, 1
a4 0, 0 0, -2 0, 0 10, -1

Pl. 2

Pl. 1

_    denotes best response

Chain of justification:
(a2, b2, a2, b2, a2, … ),  (a1, b3, a3, b1, a1, b3, … )
(a4, b4, nothing )



Rationalizable Strategies

Existence of rationalizable strategies   ← existence of Nash eq.
many rationalizable strategies.

set of rationalizable str. 
⊆ remaining strategies after iterative deletion of 

strictly dominated strategies
strictly dominated  →  never be a best response

Two-person games: 
set of rationalizable str. 

=  remaining strategies after iterative deletion of 
strictly dominated strategies



Rationalizable Strategies

Two-person games:    =  holds
L R

U 10, 1 0, 4
M x, 2 y, 3
D 0, 5 10, 2

Pl. 1

Pl. 2

10 10

0 0

0 1qR

qR =  prob. playing R
pU =  prob. playing U

L R

x y

M  is not strictly dominated by any combination of U and D
⇔ for any blue line, red line is above it for some values of qR

⇔ red line is above      ⇔ M is best response to (1/2, 1/2)

pU

1-pU

1/2

Note: Three or more person games  →  not true 
(OK for correlated str.)



Problem Set 3 (due May 11)

Exercises (p.262)

8.B.1,  8.B.3,  8.B.6,  8.B.7
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