

Bioinformatics, Yutaka Akiyama (Tokyo Tech) 今期から始まった遠隔授業の受講者の方々にも対応するため、早めにファイルを 置いていますが、授業直前に内容を修正する可能性があります。2010年4月19日

1

Fast Algorithms for Homology Search

Topics:

- •FASTA
- Lookup Table, k-tuple
- WDG (Weighted Directed Graph)

• BLAST

- neighborhood words table
- finite automaton

• PSI-BLAST

- BLAST using "profile"
- Iterative refinement of profile

Homology search from databases

Dynamic programming method (Smith-Waterman algorithm) is too slow for database search, because of <u>rapid increase of database entries</u>.

Approximated search methods are required.

FASTA

D. Lipman and W. Pearson: "Improved tools for biological sequence comparison", Proc. Natl. Acad. Sci. USA, 85:2444-2448 (1988)

Fast heuristic method to compare query sequence (DNA, or Protein) against a sequence (in a database).

Step1: Find substring matches. Speed-up by "lookup table" technique.

Step2: Find 10 best diagonal runs. Get "init 1" score, as the best diagonal score.

Step3: Attempt to join several good diagonal runs. Get "init n" score, as the best path score from "WDG" approach.

Step4: Also perform dynamic programming with only narrow band around the "init 1" diagonal. Get "opt" score, as the DP alignment score.

(when used for DB search, database sequences are ranked by "init n" or "opt" scores.

Step1: Find substring matches.

Step2: Find 10 best diagonal runs.

Step3: Attempt to join several good diagonal runs.

Best alignment score = "init n" score.

Step4: Perform usual DP with a limited band area

BLAST

BLAST = (**B**asic Local **A**lignment **S**earch **T**ool)

Stephen Altschul, Warren Gish, Webb Miller, Eugene Myers, David Lipman:

"Basic local alignment search tool", J. Mol. Biol., 215:403-410 (1990).

- Step1: Prepare "neighborhood words" table with word length "W". default: W=3 (protein), W=11 (DNA)
- Step2: Search database sequences with neighborhood words. Speed-up by "finite automaton" technique.
- Step3: Extend hits and find "HSP" (High-scoring Segment Pair) which has at least Score "S". Report the "MSP" (Maximal Segment Pair) which has the maximum score.

BLAST

The BLAST Search Algorithm

query word (W = 3) GSVEDTTGSQSLAALLNKCKTPQGQRLVNQWIKQPLMDKNRIEERLNLVEAFVEDAELRQTLQEDL Ouerv: PQG 18 PEG 15 14 PRG neighborhood PKG -14 13 PNG. words 13 PDG PHG 13 neighborhood PMG 13 PSG 13 score threshold 12 PQA (T = 13)PON 12 etc... 325 SLAALLNKCKTPOGORLVNOUIKOPLMDKNRIEERLNLVEA 365 Query: TP G R++ +W+ P+ D +LA++L++ ER + A 290 TLASVLDCTVTPMGSRMLKRWLHMPVRDTRVLLERQQTIGA 330 Sbjct:

High-scoring Segment Pair (HSP)

Substring search by finite automaton

BLAST

Threshold Score MSP score "S" follows "Extreme distribution". P (S \geq x) = 1 - exp(- exp(- λ (x - μ)))

Characteristic value μ is obtained as $\mu = \log (K MN) / \lambda$, λ is a constant, and M, N are length of query and database.

Therefore, for any probability P (e.g. P=0.05), $P = K MN \exp(-\lambda x)$ Threshold score x can be calculated as $x = 1/\lambda \{ \log(K/P) + \log(MN) \}$

Basic BLAST

Choose a BLAST program to run.

<u>nucleotide blast</u>	Search a nucleotide database using a nucleotide query <i>Algorithms:</i> blastn, megablast, discontiguous megablast						
<u>protein blast</u>	Search protein database using a protein query <i>Algorithms:</i> blastp, psi-blast, phi-blast						
<u>blastx</u>	Search protein database using a translated nucleotide query						
<u>tblastn</u>	Search translated nucleotide database using a protein query						
<u>tblastx</u>	Search translated nucleotide database using a translated nucleotide query						
program blastn blastp blastx	target DB DNA amino acid	query (input) sequence DNA amino acid DNA (translated to a.a.)					
	amino acid	DNA (translated to a.a.)					

TICKYO TIECH PusuingExcellence Winder State of the state

Query = human ALDH2 gene DNA sequence (first 50 bases)

Sequences pro (Click header	ducing significant alignments: s to sort columns)	Score		Expectation Match%			
Accession	Description	Max score	Total score	Query coverage	▲ E value	Max ident	Links
NM 000690.2	Homo sapiens aldehyde dehydrogenase 2 family (mitoch human	81.8	81.8	82%	2e-14	100%	UEG
XM 509379.2	PREDICTED: Pan troglodytes mitor Chimpangee lehydrogenase	81.8	81.8	82%	2e-14	100%	G
XR 012809.1	PREDICTED: Macaca mulatta mitochondrial aldehyde de Macaca	81.8	81.8	82%	2e-14	100%	UG
XM 001490910.1	PREDICTED: Equus caballus similar to horse Jehydr Horkey	52.0	52.0	68%	1e-05	94%	UG
NM 001075367.1	Bos taurus similar to Aldehyde dehydrogenase, mitochondria COW	52.0	52.0	68%	1e-05	94%	UG
XM 848535.1	PREDICTED: Canis familiaris similar to Alde dog vdrogenase, mit-	52.0	52.0	68%	1e-05	94%	UEG
XM 849411.1	PREDICTED: Canis familiaris similar to Aldehyde dehydrogenase, mit-	52.0	52.0	68%	1e-05	94%	G
NM 009656.3	Mus musculus aldehyde dehydrogenase 2, mitochondrial (MOUSE	46.1	46.1	62%	9e-04	93%	UEG
NM 032416.1	Rattus norvegicus aldehyde dehydrogenase : rat IRNA >embl>	46.1	46.1	62%	9e-04	93%	UEG
XM 845808.1	PREDICTED: Canis familiaris similar to Aldehyde dehydrogenase, mit-	42.1	42.1	66%	0.013	90%	UG
XM 001257227.1	PREDICTED: Bos taurus similar to Aldehyde dehydrogenase, mitochoi	40.1	40.1	56%	0.053	92%	G
NM 001093553.1	Xenopus laevis MGC80785 protein (MGC80 African frog	38.2	38.2	46%	0.21	95%	UG
NM 001004907.1	Xenopus tropicalis aldehyde dehydrogenase 2 family (mitochondrial) (38.2	38.2	46%	0.21	95%	UG
XM 001666588.1	Caenorhabditis briggsae AF16 hypothetical protein (CBG2 worm f	36.2	36.2	44%	0.82	95%	G
XM 001643835.1	Vanderwaltozyma polyspora DSM 70294 hypothetical protein (Kpol. 49	36.2	36.2	44%	0.82	95%	G
XM 001264785.1	Neosartorya fischeri NRRL 181 GTP-binding protein YchF (NFIA 01582	34.2	34.2	34%	3.3	100%	G
XM 001233054.1	PREDICTED: Gallus gallus armadillo repeat containing hen a	34.2	34.2	34%	3.3	100%	UG
XM 418230.2	PREDICTED: Gallus gallus armadillo repeat containing 6, transcript va	34.2	34.2	34%	3.3	100%	UG
XM 415171.2	PREDICTED: Gallus gallus aldehyde dehydrogenase 2 family (mitochc	34.2	34.2	50%	3.3	92%	UG
XM 766467.1	Giardia lamblia ATCC 50803 inositol 5-phosphatase (GLP 630 47132	34.2	34.2	34%	3.3	100%	G
XM 671948.1	Plasmodium berghei strain ANKA hypothetical protein (PB000013.02.0	34.2	34.2	34%	3.3	100%	G
NM 173915.2	Bos taurus qastrin (GAS), mRNA >emb X16581.1 BTPPGAST Bovine r	34.2	34.2	34%	3.3	100%	UG
XM 001492144.1	PREDICTED: Equus caballus similar to KIAA1432, (LOC100059612), n	32.2	32.2	32%	13	100%	UG
NM 129488.3	Arabidopsis thaliana jacalin lectin family protein (AT2G39310) mRNA,	32.2	32.2	32%	13	100%	UEG
NM 116485.3	Arabidopsis thaliana TOC159 (translocon outer membrane complex 15	32.2	32.2	48%	13	91%	UEG

NCBI blastn: http://www.ncbi.nlm.nih.gov/BLAST/

> <u>ref|NM_000690.2</u> <u>UEG</u> Homo sapiens aldehyde dehydrogenase 2 family (mitochondrial) (ALDH2), nuclear gene encoding mitochondrial protein, mRNA Length=2445

Score = 81.8 bits (41), Expect = 2e-14
Identities = 41/41 (100%), Gaps = 0/41 (0%)
Strand=Plus/Plus

41 bp perfect match Expectation: 2×10^{-14}

chimpangee

> <u>ref|XM 509379.2</u> **G** PREDICTED: <u>Pan troglodytes</u> mitochondrial aldehyde dehydrogenase 2 (ALDH2), mRNA Length=1967

Score = 81.8 bits (41), Expect = 2e-14
Identities = 41/41 (100%), Gaps = 0/41 (0%)
Strand=Plus/Plus

 41 bp perfect match Expectation : 2×10^{-14}

thale cress (シロイヌナズナ)

> <u>ref|NM_129488.3</u> **LEG** <u>Arabidopsis thaliana</u> jacalin lectin family protein (AT2G39310)

mRNA, complete cds Length=1610

Score = 32.2 bits (16), Expect = 13
Identities = 16/16 (100%), Gaps = 0/16 (0%)
Strand=Plus/Minus

iackfruit

16 bp perfect match Expectation : 13

PSI-BLAST

PSI (Position Specific Iterated) -BLAST

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs",

Nucleic Acids Res., 25(17), 3389-3402 (1997).

Position specific iterative BLAST (PSI-BLAST) refers to a feature of BLAST 2.0 in which a profile (or position specific scoring matrix, PSSM) is constructed (automatically) from a multiple alignment of the highest scoring hits in an initial BLAST search.

The PSSM is generated by calculating position-specific scores for each position in the alignment. Highly conserved positions receive high scores and weakly conserved positions receive scores near zero.

The profile is used to perform a second (etc.) BLAST search and the results of each "iteration" used to refine the profile. This iterative searching strategy results in increased sensitivity. *(from "PSI-BLAST tutorial", NCBI)*

