\＃6

Fast Algorithms for Homology Search

Topics：

－FASTA
－Lookup Table，k－tuple
－WDG（Weighted Directed Graph）
－BLAST
－neighborhood words table
－finite automaton
－PSI－BLAST
－BLAST using＂profile＂
－Iterative refinement of profile

Homology search from databases

Dynamic programming method（Smith－Waterman algorithm）is too slow for database search，because of rapid increase of database entries．

Approximated search methods are required．

SSEARCH（Smith－Waterman）

FASTA

nr－nt（DNA）database 105，901，840 entries （Release 09－05－17，May 09）

BLAST
faster

nr －aa（Protein）database 8，243，496 entries
（Release 07－05－17，May 09）

FASTA

D. Lipman and W. Pearson: "Improved tools for biological sequence comparison", Proc. Natl. Acad. Sci. USA, 85:2444-2448 (1988)

Fast heuristic method to compare query sequence (DNA, or Protein) against a sequence (in a database).

Step1: Find substring matches. Speed-up by "lookup table" technique.

Step2: Find 10 best diagonal runs.
Get "init 1" score, as the best diagonal score.

Step3: Attempt to join several good diagonal runs. Get "init n" score, as the best path score from "WDG" approach.

Step4: Also perform dynamic programming with only narrow band around the "init 1" diagonal. Get "opt" score, as the DP alignment score.

FASTA

Step1：Find substring matches．

k－tuple $=1$ Lookup Table	average length is $L / 4$
A： $3,7, \ldots$	
C： $2,4,8, \ldots$	
G： $1,5, \ldots$	
T： 6	

k－tuple $=2$ Lookup Table	average length is $L / 4^{2}$
AA：\ldots	GA：\ldots
AC： $3,7, \ldots$	GC： $1, \ldots$
AG：\ldots	GG：\ldots
AT：\ldots	GT： $5, \ldots$
CA： 2	TA： $6, \ldots$
CC：\ldots	TC：\ldots
CG： $4, \ldots$	TG：\ldots
CT：\ldots	TT：\ldots

FASTA

Step2: Find 10 best diagonal runs.

10 best "diagonal" regions are recorded.
The best score = "init 1" score.

FASTA

Step3: Attempt to join several good diagonal runs.

up left to down right (no backflow allowed)

Best alignment score = "init n" score.

FASTA

Step4: Perform usual DP with a limited band area

"init 1" diagonal

narrow band around init 1 diagonal

BLAST

BLAST = (Basic Local Alignment Search Tool)
Stephen Altschul, Warren Gish, Webb Miller, Eugene Myers, David Lipman:
"Basic local alignment search tool", J. Mol. Biol., 215:403-410 (1990).

Step1: Prepare "neighborhood words" table with word length "W". default: $\mathrm{W}=3$ (protein), $\mathrm{W}=11$ (DNA)

Step2: Search database sequences with neighborhood words. Speed-up by "finite automaton" technique.

Step3: Extend hits and find "HSP" (High-scoring Segment Pair) which has at least Score " S ". Report the "MSP" (Maximal Segment Pair) which has the maximum score.

BLAST

The BLAST Search Algorithm

BLAST

Substring search by finite automaton

BLAST

Threshold Score

MSP score＂S＂follows＂Extreme distribution＂．
$P(S \geqq x)=1-\exp (-\exp (-\lambda(x-\mu)) \quad)$
Characteristic value μ is obtained as
$\mu=\log (K \mathrm{MN}) / \lambda, \lambda$ is a constant，and
M, N are length of query and database．

$$
\begin{aligned}
\mathrm{P}(\mathrm{~S} \geqq \mathrm{x}) & =1-\exp (-K M N \exp (-\lambda x)) \\
& \fallingdotseq K M N \exp (-\lambda x) \quad \text {.. Poisson distribution }
\end{aligned}
$$

Therefore，for any probability P （e．g． $\mathrm{P}=0.05$ ），
$P=K M N \exp (-\lambda x)$
Threshold score x can be calculated as

$$
x=1 / \lambda\{\log (K / P)+\log (M N)\}
$$

BLAST programs

Basic BLAST

Choose a BLAST program to run.

nucleotide blast	Search a nucleotide database using a nucleotide query Algorithms: blastn, megablast, discontiguous megablast protein blast
blastx	Search protein database using a protein query Algorithms: blastp, psi-blast, phi-blast
Search protein database using a translated nucleotide query	

BLAST search example

Query = human ALDH2 gene DNA sequence (first 50 bases)

Sequences producing significant alignments: (Click headers to sort columns)		Score		Expectation Match\%			
Accession	Description	$\begin{aligned} & \text { Mas } \\ & \text { score } \end{aligned}$	Total score	Query coverage	$\begin{gathered} \mathbf{E} \\ - \text { value } \end{gathered}$	Мак ident	Links
NM 000690.2	Homo sapiens aldehrde dehrdroqenase 2 family (mitoch human	81.8	81.8	82\%	2e-14	100\%	UEG
XM 509379.2	PREDICTED: Pan troalodytes mitor chimpangee lehydroqenase	81.8	81.8	82\%	2e-14	100\%	G
XR 012809.1	PREDICTED: Macaca mulatta mitochondrial aldehyde de Macaca monkey	$\underline{81.8}$	81.8	82\%	2e-14	100\%	UG
XM 001490910.1	PREDICTED: Equus caballus similar to horse jehydr Monkey	52.0	52.0	68\%	$1 \mathrm{e}-05$	94\%	UG
NM 001075367.1	Bos taurus similar to Aldehyde dehydroqenase, mitochondria COW	52.0	52.0	68\%	$1 \mathrm{e}-05$	94\%	UG
XM 848535.1	PREDICTED: Canis familiaris similar to Alde dog vdrogenase, mits	52.0	52.0	68\%	$1 \mathrm{e}-05$	94\%	UEG
XM 849411.1	PREDICTED: Canis familiaris similar to Aldehyde dehydrogenase, mits	52.0	52.0	68\%	$1 \mathrm{e}-05$	94\%	G
NM 009656.3	Mus musculus aldehyde dehydrogenase 2, mitochondrial (- mouse	46.1	46.1	62\%	$9 \mathrm{e}-04$	93\%	UEG
NM 032416.1	Rattus norvegicus aldehyde dehydrogenase: rat IRNA >emblx	46.1	46.1	62\%	$9 \mathrm{e}-04$	93\%	UEG
XM 845808.1	PREDICTED: Canis familiaris similar to Aldehyde dehydrogenase, mits	42.1	42.1	66\%	0.013	90\%	UG
XM 001257227.1	PREDICTED: Bos taurus similar to Aldehyde dehydrogenase, mitochol	40.1	40.1	56\%	0.053	92\%	G
NM 001093553.1	Xenopus laevis MGC80785 protein (MGC80: African frog	38.2	38.2	46\%	0.21	95\%	UG
NM 001004907.1	Xenodus tropicalis aldehyde dehydrocenase 2 family (mitochondrial) ,	38.2	38.2	46\%	0.21	95\%	UG
XM 001666588.1	Caenorhabditis brigasae AF16 hypothetical protein (CBG2 worm	36.2	36.2	44\%	0.82	95\%	G
XM 001643835.1	Vanderwaltozyma polyspora DSM 70294 hypothetical protein (Kpol 4 !	36.2	36.2	44\%	0.82	95\%	G
XM 001264785.1	Neosartorva fischeri NRRL 181 GTP-binding protein YchF (NFIA 01582	34.2	34.2	34%	3.3	100\%	G
XM 001233054.1	PREDICTED: Gallus qallus armadillo repeat containina hen	34.2	34.2	34\%	3.3	100\%	UG
XM 418230.2	PREDICTED: Gallus qallus armadillo repeat containing 6, transcript va	34.2	34.2	34\%	3.3	100\%	UG
XM 415171.2	PREDICTED: Gallus qallus aldehyde dehydrogenase 2 family (mitochc	34.2	34.2	50\%	3.3	92\%	UG
XM 766467.1	Giardia lamblia ATCC 50803 inositol 5-phosphatase (GLP 63047132	34.2	34.2	34\%	3.3	100\%	G
XM 671948.1	Plasmodium berahei strain ANKA hypothetical protein (PB000013.02.0	34.2	34.2	34\%	3.3	100\%	G
NM 173915.2	Bos taurus qastrin (GAS), mRNA >emb\| $\times 16581.1 \mid$ \|BTPPGAST Bovine t	34.2	34.2	34\%	3.3	100\%	UG
XM 001492144.1	PREDICTED: Equus caballus similar to KIAA1432, (LOC100059612), π	32.2	32.2	32\%	13	100\%	UG
NM 129488.3	Arabidopsis thaliana jacalin lectin family protein (AT2G39310) mRNA,	32.2	32.2	32\%	13	100\%	UEG
NM 116485.3	Arabidopsis thaliana TOC159 (translocon outer membrane complex 1!	32.2	32.2	48\%	13	91\%	UEG

NCBI blastn: http://www.ncbi.nIm.nih.gov/BLAST/

BLAST search example（cont＇d）

human

$>\square$ ref｜NM 000690.21 UEG Homo sapiens aldehyde dehydrogenase 2 family（mitochondrial）
（ALDH2），nuclear gene encoding mitochondrial protein，mRNA
Length＝2445

```
Score = 81.8 bits (41), Expect = 2e-14
Identities = 41/41 (100%), Gaps = 0/41 (0%)
Strand=Plus/Plus
```


41 bp perfect match
Expectation： 2×10^{-14}

```
> ref|XM_509379.21
G PREDICTED:
chimpangee
                    Pan troglodytes 
2 (ALDH2), mRNA
Length=1967
    Score = 81.8 bits (41), Expect = 2e-14
    Identities = 41/41 (100%), Gaps = 0/41 (0%)
Strand=Plus/Plus
```



```
41 bp perfect match
Sbjet 1406 GGGTCAACTGCTATGATGTGTTTGGAGCCCAGTCACCCTTT 1446
```

$>\square$ ref｜NM 129488.31
Lengt $h=1610$
arabidopsis thaliana jacalin lectin family protein（AT2G39310）

Score $=32.2$ bits（16），Expect $=13$
Identities $=16 / 16(100 \%)$ ，Gaps $=0 / 16(0 \%)$ Strand＝Plus／Minus

Query	16	ACTGCTATGATGTGTT	31
Sbjct	283	$\|\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$	
ACTGCTATGATGTGTT	268		

not significant

PSI-BLAST

PSI (Position Specific Iterated) -BLAST

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", Nucleic Acids Res., 25(17), 3389-3402 (1997).

Position specific iterative BLAST (PSI-BLAST) refers to a feature of BLAST 2.0 in which a profile (or position specific scoring matrix, PSSM) is constructed (automatically) from a multiple alignment of the highest scoring hits in an initial BLAST search.
The PSSM is generated by calculating position-specific scores for each position in the alignment. Highly conserved positions receive high scores and weakly conserved positions receive scores near zero.
The profile is used to perform a second (etc.) BLAST search and the results of each "iteration" used to refine the profile. This iterative searching strategy results in increased sensitivity. (from "PSI-BLAST tutorial", NCBI)

PSI-BLAST

