\＃4

Phylogetic Tree

－Topics：
－PhylogeneticTree
multiple alignment and phylogenetic tree
－Rooted and Unrooted Tree
－Distance Matrix methods
UPGMA method，Neighbor Joining method
－Character States methods
Parsimony method，Maximum likelihood¹ method

Similarity Score Matrix for Protein Review

	A	R		N	D	C	Q	E	G	H	I	L	K	M	F		S	T	W	Y	V
A	A	-1	1 -	-2	-2	0	-1	-1	0	-2	-1	-1	-1	1 -1	1 -2		$1{ }^{1} 1$	0	-3	-2	2
R	-	5	0	0	-2	-3	1	0	-2	20	-3	-2	2	-1	1 -3	-2	$2{ }^{-1}$	-1	-	-2	
N		0		6	1	-3	0	0	0	1		-3	0	-2	-3		21	0	-1	1 -2	$2{ }^{-3}$
D		2	2	1	6	-3	0	2	-1	-1	-3	-4		1 -3	-3		10	-1	-4		
C	0	-3	-	-	-3	9	-3	-4	-3	3-3	-1	-1	-3	3 -1	1 -2		3 -1	-1	-2		$2-1$
Q	-	1	0	0	0	-3	5	2	-2	20	-3	-2	1	0	-3		10	-1		2-1	2
E	-	0	0	0	2	-4	2	5	-2	20	-3	-3	1	-2	3		$1{ }^{1} 0$	-1	-3	-2	2
G	0	-2	20	0	-1	-3	-2	-2	6	-2	-4	-4	-2	$2-3$	-3		20	-2	-2	2	$3-3$
H	2	0	1	1	-1	-3	0	0	-2	28	-3	-3	-1		-1		$2{ }^{-1}$	-2	-2	2	-3
I		-3	-	-	-3	-1	-3	-3	-4	-3	4	2	-3	31	0		$3-2$	-1		$3-1$	3
L		-2	2	-3	-	1	-2	3	-4	-3	2	4	-2	22	0		$3{ }^{-2}$	-1		$2{ }^{-1}$	
K		2	0	0	-1	-3	1	-	-2	-1	-3	-2	5		1 -3		10	-1	-3	$3-2$	2
M		-1	-	-	-3	-1	0	-2	-3	3-2	1	2	-1	1	0		$2{ }^{-1}$	-1		$1{ }^{-1}$	1
F		-3	-	-	-3	-2	-3	-3	-3	$3{ }^{-1}$	0	0	-3	30			4 -2	-2	1	3	
		-2		-2	-1	-3	-1	-1	-2	-2	-3	-3	-1				71	-1			
S		-1	1	1	0	-1	0	0	0	-1	-2	-2	0				14	1		$3-2$	2
T	0	-1	10	0			-1	-1	-2	-2	-1	-1					$1{ }^{1} 1$	5		$2-2$	0
		-3		-	-4	-2	-2	-3	-2	-2	-3	-2			11		$4-3$	-2		1	
	-2	-2	$2-$	-2	-3	-2	-1	-2	-3	2		-1			3		3 -2	-2		7	
V	0	-3	-	-3			-2	-2	-	-3	3	1		21			2 -2	0		$3-1$	4

BLOSUM62

default matrix
for protein
sequence
comparison

Phylogenetic Tree

Molecular (DNA, Protein) level

Species level
a dendrogram representing phylogenetic relationship

Multiple alignment and Phylogenetic Tree

Prepare N sequences that seem to be
 evolutionally related

```
"Chicken & Egg" relationship
```


Rooted and Unrooted Tree

evolution from a root to leaves

evolution from a center to leaves
※Change an unrooted tree into a rooted tree

1) Put one obviously remote sequence (Outlier). The branch to it becomes a root.
2) Take a center of the longest edge as a root.

Algorithms for Phylogenetic Tree Reconstruction

1）Distance Matrix methods（距離行列法）
Distance matrix among N sequences is calculated at first．
a）UPGMA $\left\{\begin{array}{c} \\ 3\end{array}\right.$
b）NJ（Neighbor Joint）（近堘結合法）
2）Character states methods（形質状態法）
Best tree topology is seeked based on some criterion．
c）Persimony（最節約法）
d）Maximum Likelihood（最尤法）

Sequence Distance

Definition (example):

Distance between Sequence Si and Sj

Seq. Si : ATTGGTGTGA
 Seq. Sj : ATAGGTGATA

Fraction of replaced chars.
There are several possible
$f=3 / 10$
\rightarrow distance 0.3 definitions for sequence distance.

Example shown left is frequently used in DNA sequence research (Gaps are not considered)

Modification of Distance

There is a tendency of underestimation if we take simple counts for different
Modified definition of distance between Si \& Sj

$$
\mathrm{dij}=-\frac{3}{4} \log \left(1-\frac{4}{3} \mathrm{f}\right)
$$

$$
\begin{aligned}
& \text { if } \mathrm{f}=0 \text { then } \mathrm{dij}=0 \\
& \text { if }(\mathrm{f} \ll 1) \text { then } \\
& \quad \log (1+\mathrm{x}) \fallingdotseq \mathrm{x} \\
& \mathrm{dij} \fallingdotseq \mathrm{f} \\
& \mathrm{f} \rightarrow 0.75 \\
& \quad \mathrm{dij} \rightarrow \infty
\end{aligned}
$$

Jukes-Cantor correction : most simple theory assuming equal mutation probability among A,T,G,C

UPGMA method

using general hierarchical clustering method makes a cluster of closest sequences at first

1）Initialization（each sequence＝each cluster）N clusters exists．
2）Find a cluster pair（ Ci, Cj ）which has the minimum distance Dij ．
Merge the two and make a new cluster Ck
definition of＂distance＂ Dij between（ Ci, Cj ）is：
the average of all possible element pairs between Ci ，and Cj ．
3）Draw a new branch point k above Ci ，and Cj 。k has the height of $\mathrm{Dij} / 2$.
4）If there is only one cluster then stop，otherwise go to step 2）．

※UPGMA：Unweighted pair group method using arithmetic averages

UPGMA example

Neighbor Joining (NJ) method

A method to construct an unrooted tree, through operations called neighbor joining (merging two nodes into one).
Proposed by Naruya Saito (NIG, Japan) on 1987.
Neighbor pair is chosen so that the total length of tree is minimized. (not simply choose closest pair to merge)

1) In initial state, each sequence is regarded as an independent leaf node. N nodes.
2) Choose node $i \& j$ with minimum Dij* value. Merge i \& j and make new node k. Definition of distance Dij* between node i and leaf j :
$\mathrm{Dij}^{*}=\mathrm{Dij}_{\mathrm{ij}}-(\mathrm{Ri}+\mathrm{Rj}) \quad$... (based on Dij, but also try to minimize total tree)
Ri is average distance between node i and rest of nodes.
Rj is average distance between node j and rest of nodes.
3) Draw new node k on phylogenetic tree, recalculate new distance to k from m as $\mathrm{d} \mathrm{km}=1 / 2(\mathrm{~d} \mathrm{im}+\mathrm{djm}-\mathrm{dij})$
and connect k to i and j respectively with setting new edge length as
$d i k=1 / 2(d i j+R i-R j)$, and $d j k=1 / 2(d i j-R i+R j)$
4) If there are more than three nodes then go to 2)
otherwise, connect last two nodes i \& j with a edge of length dij, and finish ${ }^{11}$

NJ method example

Distance matrix below is same as the UPGMA example. However, unrooted tree is obtained.

	1	2	3	4
1	0.0	0.02	0.07	0.09
2	0.02	0.0	0.07	0.09
3	0.07	0.07	0.0	0.04
4	0.09	0.09	0.04	0.0

	5	3	4
5	0.0	0.06	0.08
3	0.06	0.0	0.04
4	0.08	0.04	0.0
$(0.07+0.07-0.02) / 2=0.06$ $(0.09+0.09-0.02) / 2=0.08$ $~$$\|$5 6 5 0.0 0.05 6 0.05 0.0 $(0.06+0.08-0.04) / 2=0.05$			

$(1,2)$ chosen as neighbor. node 5 is created.

3, 4
$(3,4)$ chosen as neighbor. node 6 is created.

Parsimony method

S1: ATGT
S2: ATCT
S3: A G G C
S4: A G C C

To minimize "the total number of mutations" in the phylogenetic tree.
Need to solve two problems simultaneously
(1) Search a good topology of phylogenetic tree.
(2) Optimize the assumed sequences for internal points.

Efficient algorithm is known for (2).
Exponential time cost for rigorous algorithm for (1).

Bootstrap Sampling

Resampling method：to verify statistical significance of phylogenetic tree

