

Bioinformatics, Yutaka Akiyama (Tokyo Tech) 今期から始まった遠隔授業の受講者の方々にも対応するため、早めにファイルを 置いていますが、授業直前に内容を修正する可能性があります。2010年4月19日

Multiple Alignment

- •<u>Topics</u>:
 - Sequence Alignment for Proteins Similarity Matrix
 - Multiple sequence alignment
 - Sum of Pairs (SP) score
 - Multiple alignment by DP
 - •Heuristic approaches for multiple alignment
 - Center star method, Progressive (Tree-based) method, Iterative improvement method

DNA \rightarrow **RNA** \rightarrow **Proteins**

sequence of 20 amino acids

20 residues as elements of protein

From : IPA Educational Material Archive, http://www2.edu.ipa.go.jp/gz/

Codon Table

-:			Third b	Third base		
-1r ⊢1	st dase	U	С	Α	G	
I.	UUU Phenylalar	iine (Phe)	UCU Serine (Ser)	UAU Tyrosine (Tyr)	UGU Cysteine (Cys)	U
	UUC Phe		UCC Ser	UAC Tyr	UGC Cys	С
U	UUA Leucine (L	eu)	UCA Ser	UAA STOP	UGA STOP	Α
	UUG Leu		UCG Ser	UAG STOP	UGG Tryptophan (Trp)	G
	CUU Leucine (L	eu)	CCU Proline (Pro)	CAU Histidine (His)	CGU Arginine (Arg)	U
	CUC Leu		CCC Pro	CAC His	CGC Arg	С
Ľ	CUA Leu		CCA Pro	CAA Glutamine (Gln)	CGA Arg	А
	CUG Leu		CCG Pro	CAG GIn	CGG Arg	G
	AUU Isoleucine (Ile)		ACU Threonine (Thr)	AAU Asparagine (Asn)	AGU Serine (Ser)	U
	AUC Ile		ACC Thr	AAC Asn	AGC Ser	С
^	AUA Ile		ACA Thr	AAA Lysine (Lys)	AGA Arginine (Arg)	А
	AUG Methionine	e (Met) or START	ACG Thr	AAG Lys	AGG Arg	G
G	GUU Valine Val		GCU Alanine (Ala)	GAU Aspartic acid (Asp)	GGU Glycine (Gly)	U
	GUC (Val)		GCC Ala	GAC Asp	GGC Gly	С
	GUA Val		GCA Ala	GAA Glutamic acid (Glu)	GGA Gly	А
	GUG Val		GCG Ala	GAG Glu	GGG Gly	G

Three consecutive bases (=codon) on RNA is translated to one amino acid residue. Third base is relatively tolerant for mutation (synonymous substitution = 同義置換).

From NCBI "Entrez Genome" WWW page (Viral Genomes)

Swine = hog, pig

Avian = bird's

Flu = influenza

高病原性鳥インフルエンザウイルスに感染したニワトリ 図1

high-pathogenic avian influenza

(a) 眼周囲に腫脹が認めら れる。

(b)右は健康なニワトリ,左 は感染したニワトリ。肉冠 に壊死が認められる。

(c)右は健康なニワトリ.左 は感染したニワトリ。脚に 皮下出血が認められる。

high-pathogenic virus *low*-pathogenic virus 低病原性ウイルス 高病原性ウイルス RETR REBRBKKB **FURIN** S-S enzyme トリプシン様 フリン プロテアーゼ 全身臓器に存 在するタンパ 呼吸器,腸管に ク質分解酵素 4 存在するタンパ ク質分解酵素 全身感染 局所感染 Ö

trypsin-like protease

> From: "Medical Bio", Ohmsha, Jan., 2009, "メディカル バイオ" オーム社

- 1. Visit NCBI's *Influenza Virus Resource* site at http://www.ncbi.nlm.nih.gov/genomes/FLU/Database/select.cgi
- 2. Set **Species=Influenza virus A**, **Host=any**, Country=any, **Segment/Protein=NA (neuraminidase)**, Date Range year=2005-2010 for example.
- 3. Check Full-length .. only box, and Remove identical ... box.

S NCBI											
HOME SEARCH SITE MAP FIL	uhome Database	Genome Set Alignment	Tree BLAST A	Annotation FTP Help	Contact us						
Main Page>>Database											
What are you looking for? Select one name each from the lists provided, and/or fill in the boxes. Multiple queries can be built by clicking the "Add to Query Builder" button every time a new query is made, and queries in any combination from the Query Builder can be selected to get sequences in the database. An advanced search tool is available here.											
show: Protein sequence Coding region Nucleotide sequence Virus Species Host Country/Region Segment/Protein Date Range Help											
any Influenzavirus A Influenzavirus B Influenzavirus C	y ♥ ■ Africa	HA NP NA M1	year From: 200 To: 201	r month day 05 01 01 01 01 01 01 01 01 01 01 01 01 01							
Subtype Min. length M	Iax. length										
H1N1		S	earch by a string Help								
Full-length sequences only Help 🔽 Remove identical sequences Help 🔲 Sequences from the FLU project only Help 🔲 Include Lab strains Help											
Add to Query Builder	Clear selectio	n		Find sequence by A	ccession						
Query Builder											
Get sequences 4. Then press "Get sequences" button											

- 1. Check how many sequences are matched in total. (353 in this example)
- 2. Set order as "host > year > country", and then push "**Reorder sequences**" button.
- 3. Then crick the first checkbox (shown below), in order to cancel default checks below.
- 4. Choose some sequences from the list, by clicking check box on each line.
 - Check 4 from Avian, 10 from Human, and 4 from Swine (in total 18 sequences)

S NCBI	Influenza Virus Resource											
HOME SEARCH SITE MAP Flu home	Database Ge	enome Set 🔋 Alignment 🛛 T	ree BLAST Annotation FTP Help	Contact us								
Main Page>>Database												
Select/de-select sequences from the list below. Click on an action button to proceed.												
Show Query Builder												
Ordered by the following fields												
host 🗸 country 🗸 year 🗸 🧹 Reorder sequences Add your own sequences												
	- Select FAS	STA sequences to download -	- Select accession list to download -									
✓ accession length fost	NA UINI Ita	ntry year Virus na Ju 2006 Influenza A	me 353 protein sequences	Age Gender								
✓ ACJ14470 409 Avian ACJ14448 469 Avian	NA HINI Ita NA HINI Ita	dy 2000 Influenza A	virus (A/duck/Italy/281904/2000(H1N1))									
✓ BAG85128 469 Avan	NA H1N1 Jap	oan 2007 Influenza A	virus (A/duck/Hokkaido/w73/2007(H1N1)))								
ACA04511 469 Avian	NA H1N1 US	A 2005/03/01 Influenza A 5/2005(H11	virus (A/muscovy duck/New York/21211- N1))	Adult								
ABO52107 469 Environmen	t NA H1N1 US	A 2005/08/10 Influenza A (H1N1))	virus (A/environment/Ohio/1007/2005									
ACB36679 470 Giant anteater	NA H1N1 US	A 2007 Influenza A 733/2007(F	virus (A/giant anteater/Tennessee/UTCVM0 H1N1))	7- 9								
ABJ16678 470 Human	5. Then press	6 "Do multiple alig	gnment" button									

- 1. **Multiple alignment** for selected sequences are obtained in a few minutes.
- 2. Browse the whole sequences by using horizontal scroll bar.

но	ME SEA	IRCH	SITE MAP	Fl	u home	Dat	abase	Ge	enome s	Set	Alignr	nent	Tree	BLAST	Anr	notation	FTP	Help	Conta	act us
Mu	Multiple alignment for 18 protein sequences. Alignment length is 470.																			
													Go to							
	Build	a tre	e		Download	alignmen	nt 📔	Print-	-friendly	version	p	osition	1					BLAS	T 2 seq.	Clear
						-						G	<u>م</u>		1					
1	24	Ļ	48	71	95	118	142	165	189	212	236	259	283	306	330	353	377	400	424	447 470
-																				
Pos	Bition	. 1	1		20.		30	40		50	60	70		.80	90.	1		110	120	1
Cor	nsensu	s MNP1	IQKIITI	GSISI	IAIGIISI	MLQIGNI	ISIWASHS	SIQTGSQ	NNTGIC	NQRIITYP	ENSTWVNE	HTYVNINN	TNVVAGE	DKTSVTLA	GNSSLC	SISGWAIY	TKDNSIF	IGSKGDV	FVIREPFI	SCSHLECR
AC	J14470	• • • • •	• • • • • • •	Cl	ſVA	M	· · · · V · · ·	N.	YQPEL.	S	NC	2s.	LLTEO	AV.P.A	•••••	P	SG	• • • • • • •		••••• 🔨
ACI	J14448	• • • • •	••••••	Cl	ſVA	· · · · · M	· · · · V· · ·	N.	YQPEP.	s	N (1s.	LLTEQ	AV.P.A	•••••	P	SG	•••••	• • • • • • • • •	•••••
BAC	385128	• • • • •	••••••		1VA		1	N.	YUPEP.	s	N (1s.	FL.EQ	AV	•••••	P	SG	•••••	• • • • • • • • •	
ACA	404511	• • • • •	••••••	· · · · C	A	v	····v···	• • • • • • • •	.HPET.	sv	N (JIS.		AVAP		P	SG	•••••	• • • • • • • • •	•••••
ACI	451249					8.								· · · · · · · · · · · · · · · · · · ·						
ACI	451075	• • • • •	••••••		• • • • • • • • •		•••••	• • • • • • • •	• • • • • •	•••••	• • • • • • • •	• • • • • • • • •	••••••			••••••	• • • • • • • •	•••••		
ACI	451275	• • • • •				сн с				•••••	•••••••	• • • • • • • • •				••••••			• • • • • • • • •	
ACI	451200	• • • • •						п		•••••	•••••••	• • • • • • • • •				••••••			• • • • • • • • •	
ACI	451295	• • • • •								•••••	•••••••					••••••			• • • • • • • • •	
2 CI	451056																			
201	151200													м						
AC1	191900																			
BAT	F63112					v			н				R							
AB	40397			VC	/Ͳ	т	т.	N	OPET.		N C	D. F		ATV K		PV	sv.			
ACT	065206	. т	. R	TVCI	.TVV	Ī	V. L. T	ER	HPET	S.NV.	N (s.	T.R.O	GV. TT.		P	s	т		
ACI	065204	т.	.R	TVCI	.IVV.	L	V.L.IN.	EK	HPET.	5.NV	NC	s.	I.D.O	GV.II.		Ρ	s	I		
ACI	169548	т.	.R	TVCI	.IVV	L	V.L.IN.		.HPET.	S.NV	N0	s.	I.D.O	GVII		P	s	I		
																				×
		<																		>

First 4 sequences are from Avian, middle 10 are from Human, and last 4 from Swine. Avian neuraminidase and Swine neuraminidase are much different from Human's. Important catalytic site residues are still conserved (116,149,276,292,374,409,428).

- 1. Press "Build a tree" button, and then click "Next step >>".
- 2. Select Clustering Algorithm=Neighbor Joint, and Distance=F84 matrix.
- 3. Click "Next step >>" and then you will get a calculated **Phylogenetic Tree.**

11

"avian-like swine" influenza viruses have been reported.

Alignment score

alignment

Example mat score unn for DNA gap

Scoring values are subject to change, depending to the purpose of study, and/or nature of subjects.

Sequence alignment by DP

for i>0, j>0,

$$M[i,j] \leftarrow max \left\{ \begin{array}{c} M[i-1,j] + w \\ M[i,j-1] + w \\ M[i-1,j-1] + S[i,j] \end{array} \right\}$$

where S[i, j] is the match/unmatch score, w is gap penalty constant (<= 0), and M[i, j] is accumulated score until [i,j].

Boundary setting. $M[i, 0] \leftarrow 0, M[0, j] \leftarrow 0$ (note: here "outgap" has no penalty) w = 0 for last column and last row. ¹⁴

Out Gap

Outer trim area is called as an "Out Gap".

Out Gap penalty is sometimes set to zero. It means that any movement on four edges (black arrow in the fig.) can be done without penalty.

Similarity Score Matrix for Protein

BLOSUM62

default matrix for protein sequence comparison

Multiple Sequence Alignment

エントリ名		位置	1	10	20	30	40	50	60
tyrocidine-l_[ty	1	47	LCIGGVG	LARGYWN	RPDLTAEKF		k	MYRTGDLAKWL	TDG
gramicidin-S-I_[1	47	LCIGGEG	LARGYWK	RPELTSQKF		k	LYKTGDQARWL	PDG
gramicidin-S-II_	1	47	LYISGAN	VGRGYLN	VQELTAEKF	FADPFRPNE		MYRTGDLARWL	PDG
ACV-domain-1_Pen	1	55	LHIGGLG	I SKGYLN	RPELTPHRF	-IPNPFQTDCE	KQLGINSL	.MYKTGDLARWL	PNG
ACV-domain-1_Asp	1	55	LHIGGLG	I SKGYLN	RPDLTPQRF	-IPNPFQTDHE	KELGLNQL	.MYKTGDLARWL	PNG
ACV-domain-2_Pen	1	57	LYLGGEG	VVRGYHN	RADVTAERF	–IPNPFQSEED	KREGRNSF	LYKTGDLVRWI	IPGSSG
ACV-domain-2_Asp	1	57	LYLGGEG	VARGYHN	RPEVTAERF	-LRNPFQTDSE	RQNGRNSF	LYRTGDLVRW	IPG <mark>SN</mark> G
ACV-domain-3_Pen	1	55	LYLAGDS	VTRGYLN	PLLTDORF	-IPNPFCKEED	IAMGREAF	LYKTGDLVRSF	RFNR
ACV-domain-3_Asp	1	55	LYLAGDC	VARGYLN	QPVLTGDRF	-IQNPFQTEQD	IACGSYPF	LYRTGDLFRCF	RLDR
enterobactin_[en	1	41	LMTRGPY	TFRGYYK	SPQHNASAF	DANGF		YCSGDLISIC	PEG
angR-protein_[an	1	44	LWIGGDG	I ALGYFD	DELKTQAQFL	IDGHAW		YRTGDMGCYV	PDG
luciferase_Photi	1	41	LCVRGPM	IMSGYVN	NPEATNAL I	DKDGW		LHSGD AYWE	DEDE
luciferase Lucio	1	41	VCVKGPM	LMKGYVN	VPEATKELI	DEEGW		LHTGDIGYYE	DEEK
luciferase-green	1	41	LCIKGPM	VSKGYVNI	VVEATKEAI	DDDGW		LHSGDFGYYE	DEDE
luciferase-y-gre	1	41	LCVKGPM	VSK GYVNI	VVEATKEAI	DDDGW		LHSGDFGYYE	DEDE
luciferase-yello	1	41	LCIKGPM	VSKGYVNI	VVEATKEAI	DDDGW		LHSGDFGYYE	DEDE
luciferase-orang	1	41	LCIKGPM	VSK GYVNI	WKATKEAI	DDDGW		LHSGDFGYYE	DEDE
antigen [octapep	1	41	LLIKSDS	MFSGYFL	EKESTEHAF			FKTGDIVQI	DNG
acvl-CoA rat [lo	1	41	VCVKGAN	VFKGYLK	DPARTAEAL	DKDGW		LHTGD I GKWL	PNG
acyl-CoA human [1	41	VCVKGPN	VFQGYLK	PAKTAEAL	DKDGW		LHTGD I GKWL	PNG
CoA-ligase rice	1	41		IMKGYLN	VPEATKNTI	DAEGW		LHTGDIGYVE	DDDD
4CL1-CoA-ligase	1	41	ICIRGDQ	IMKGYLN	DPESTRTTI	DEEGW		LHTGDIGFI	DDDD
4CL2-CoA-ligase	1	41	ICIRGDQ	IMKGYLN	DPESTRTTI	DEEGW		LHTGDIGFI	DDDD
St4CL-2a-CoA-lig	1	41	ICIRGDQ	IMKGYLN	DPEATARTI	EKEGW		LHTGDIGFI	DDDD
St4CL-1-CoA-liga	1	41	ICIRGDQ	IMKGYLN	PEATARTI	-EKEGW		LHTGDIGFIC	DDDD
St4CL-2b-CoA-lig	1	41	CIRGDQ	IMKGYLN	DPEATARTI	EKEGW		LHTGDIGFIC	DDDD
acetyl-CoA Neuro	1	26	R	YMETYLH				YFTGDGAAR)HEG
acetyl-CoA_Asper	1	26	R	YMDTYLQ		VYKGY		YFTGDGAGR	DHEG

Multiple alignment example: 28 Luciferase proteins from fireflies (part)

Multiple Alignment Score

Sum of Pairs (SP) score

Score(Seq₁(i), Seq₂(i), ...Seq_N(i)) =
$$\sum_{k=1}^{N} \sum_{l=1}^{k-1} S(Seq_k(i), Seq_l(i))$$

= S('T','S') + S('T','S')+S('T','T')

cf. **Minimum entropy score** (Theoretically more favorable) S(X, Y) is similarly score, S(X, '-') = w (w<=0, gap penalty) and $\underline{S('-', '-') = 0}$.

Multiple Alignment Score

for DNA sequences

Score(Seq₁(i), Seq₂(i), ...Seq_N(i)) = $\Sigma \Sigma S$ (Seq_k(i), Seq_l(i))

$$= S('A', G') + S('-', G') + S$$

Multiple Alignment by DP

Note: **N- dimentional** direct DP with length L will consume O (L^N) time and space.

Heuristic approaches for multiple alignment

(1) Star method

токуо тесн

Heuristic approaches for multiple alignment

(2) Progressive (Tree-based) method

Heuristic approaches for multiple alignment

(3) Iterative improving method

(1) Make an initial multiple alignment.

- (2) Choose one sequence SeqC (randomly)
- (3) Perform **sequence-profile alignment** between **SeqC** and the profile made from rest of sequences.
- (4) go to (2) unless no progress obtained or iteration count reached to the limitation.

By random selection, it is expected to escape from local minimum.

<u>Taky finding conserved motifs by multiple sequence alignment</u>

>MMULV LLDFLLHQLTHLSFSKMKALLERSHSPYYMLNRDRTLKNITETCKACAQVN

- >HTLV LQLSPAELHSFTHCGQTALTLQGATTTEASNILRSCHACRGGN
- >RSV YPLREAKDLHTALHIGPRALSKACNISMQQAREVVQTCPHCNSA
- >MMTV IHEATQAHTLHHLNAHTLRLLYKITREQARDIVKACKQCVVAT
- >SMRV LESAQESHALHHQNAAALRFQFHITREQAREIVKLCPNCPDWGS

http://www.icot.or.jp/ARCHIVE/Museum/SOFTWARE/GIP/gene_alignment.html

Multiple Alignment (Iterative Improvement method) on PAPIA service (http://mbs.cbrc.jp/papia/)

