## \＃3

## Multiple Alignment

－Topics：
－Sequence Alignment for Proteins
Similarity Matrix
－Multiple sequence alignment
Sum of Pairs（SP）score
Multiple alignment by DP
－Heuristic approaches for multiple alignment
Center star method，Progressive（Tree－based）method， Iterative improvement method

## DNA $\rightarrow$ RNA $\rightarrow$ Proteins


sequence of 4 nucleobases DNA
11. Transcription RNA $\square$ functional RNA
12. Translation

| 2 dabass in cosion |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | U | C | A | G |  |  |
|  | U | pom | $\stackrel{\text { som }}{\text { sem }}$ | 5in | \% | U |  |
|  |  | ! 10 | ${ }_{\text {ser }}$ | m | Tor | $\stackrel{8}{4}$ |  |
|  | C | ${ }_{\text {lou }}$ |  | ${ }_{\text {cin }}^{\text {cim }}$ | $\sim_{n}^{\sim}$ | ${ }_{\text {c }}^{\text {c }}$ |  |
|  | A |  |  | $\sum_{i m}^{*}$ |  | $\stackrel{\text { ci }}{\text { c }}$ |  |
|  | G |  |  |  |  |  |  |

$\square$

## sequence of 20 amino acids

## 20 residues as elements of protein


$\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}-\mathrm{COOH} \mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}-\mathrm{COOH} \mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}-\mathrm{COOH} \mathrm{H}_{2} N-\mathrm{CH}-\mathrm{COOH} \mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}+\mathrm{COOH}$


Protein molecule is a linear chain composed of amino acid residues.
(details shown in Lesson 11)
Amino acid residues (1 character code)
G, A, V, L, I,
S, T, C, M, D,
$\mathbf{N}, \mathrm{E}, \mathrm{Q}, \mathrm{R}, \mathrm{K}$,
H, F, Y, W, P
Standard 20 residues.
(Exceptionally also 21st, 22nd residues )

From :IPA Educational Material Archive, http://www2.edu.ipa.go.jp/gz/

## Codon Table

| First base | Second base |  | Third base |  |
| :---: | :---: | :---: | :---: | :---: |
|  | C | A | G |  |
| UUU Phenylalanine（Phe） | UCU Serine（Ser） | UAU Tyrosine（Tyr） | UGU Cysteine（Cys） | $\stackrel{\downarrow}{\text { U }}$ |
| UUC Phe | UCC Ser | UAC Tyr | UGC Cys | C |
| UUA Leucine（Leu） | UCA Ser | UAA STOP | UGA STOP | A |
| UUG Leu | UCG Ser | UAG STOP | UGG Tryptophan（Trp） | G |
| CUU Leucine（Leu） | CCU Proline（Pro） | CAU Histidine（ His ） | CGU Arginine（Arg） | U |
| CUC Leu | CCC Pro | CAC His | CGC Arg | C |
| CUA Leu | CCA Pro | CAA Glutamine（Gln） | CGA Arg | A |
| CUG Leu | CCG Pro | CAG Gin | CGG Arg | G |
| AUU Isoleucine（ Il ） | ACU Threonine（Thr） | AAU Asparagine（Asn） | AGU Serine（Ser） | U |
| AUC Ile | ACC Thr | AAC Asn | AGC Ser | C |
| AUA Ile | ACA Thr | AAA Lysine（Lys） | AGA Arginine（Arg） | A |
| AUG Methionine（Met）or START | ACG Thr | AAG Lys | AGG Arg | G |
| GUU Valine Val | GCU Alanine（Ala） | GAU Aspartic acid（Asp） | GGU Glycine（Gly） | U |
| GUC（Val） | GCC Ala | GAC Asp | GGC Gly | C |
| GUA Val | GCA Ala | GAA Glutamic acid（Glu） | GGA Gly | A |
| GUG Val | GCG Ala | GAG Glu | GGG Gly | G |

Three consecutive bases（＝codon）on RNA is translated to one amino acid residue． Third base is relatively tolerant for mutation（synonymous substitution＝同義置換）．


From NCBI "Entrez Genome" WWW page (Viral Genomes)

## Swine = hog, pig <br> Avian = bird's <br> Flu <br> = influenza

high－pathogenic avian influenza
（a）眼周囲に腫脹が認めら れる。
（b）右は健康なニワトリ，左 は感染したニワトリ。肉冠 に壊死か認められる。
（c）右は健康なニワトリ，左 は感染したニワトリ。脚に皮下出血が認められる。

low－pathogenic virus high－pathogenic virus
trypsin－like protease


## FURIN

 enzymeFrom：
＂Medical Bio＂， Ohmsha， Jan．，2009， ＂メディカル バイオ＂ オーム社

1. Visit NCBI's Influenza Virus Resource site at http://www.ncbi.nlm.nih.gov/genomes/FLU/Database/select.cgi
2. Set Species=Influenza virus A, Host=any, Country=any,

Segment/Protein=NA (neuraminidase), Date Range year=2005-2010 for example.
3. Check Full-length .. only box, and Remove identical ... box.


1. Check how many sequences are matched in total. ( 353 in this example)
2. Set order as "host > year > country", and then push "Reorder sequences" button.
3. Then crick the first checkbox (shown below), in order to cancel default checks below.
4. Choose some sequences from the list, by clicking check box on each line.

Check 4 from Avian, 10 from Human, and 4 from Swine (in total 18 sequences)


1. Multiple alignment for selected sequences are obtained in a few minutes.
2. Browse the whole sequences by using horizontal scroll bar.


First 4 sequences are from Avian, middle 10 are from Human, and last 4 from Swine. Avian neuraminidase and Swine neuraminidase are much different from Human's. Important catalytic site residues are still conserved (116,149,276,292,374,409,428).

1. Press "Build a tree" button, and then click "Next step >>".
2. Select Clustering Algorithm=Neighbor Joint, and Distance=F84 matrix.
3. Click "Next step >>" and then you will get a calculated Phylogenetic Tree.


"avian-like swine" influenza viruses have been reported.

## Alignment score

alignment

|  | T | G | C | T | T | A |  |  | G |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ． |  |  |  |  |  |  |  |  |
| A $T$ | A | A | C | － | － | － |  |  | G |  |
|  | 个 | $\uparrow$ | $\uparrow$ | $\uparrow$ | $\uparrow$ |  |  |  |  |  |


| Example score for DNA | match： | ＋2 |
| :---: | :---: | :---: |
|  | unmatch： | －1 |
|  | gap： | －1 |

Scoring values are subject to change， depending to the purpose of study， and／or nature of subjects．

## Sequence alignment by DP


for $i>0, j>0$,

where $S[i, j]$ is the match/unmatch score, w is gap penalty constant $(<=0)$, and $\mathrm{M}[\mathrm{i}, \mathrm{j}]$ is accumulated score until $[\mathrm{i}, \mathrm{j}]$.

Boundary setting.
$\mathrm{M}[\mathrm{i}, 0] \leftarrow 0, \mathrm{M}[0, \mathrm{j}] \leftarrow 0$
(note: here "outgap" has no penalty)
$\mathrm{w}=0$ for last column and last row. ${ }^{14}$

## Out Gap



Outer trim area is called as an＂Out Gap＂．
Out Gap penalty is sometimes set to zero． It means that any movement
 on four edges（black arrow in the fig．）can be done without penalty．

## Similarity Score Matrix for Protein

|  | A | R | N |  | D ${ }^{\text {C }}$ |  | Q | E | G | H | 1 | L | K | M | F | P | S | T | W | V | V |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | 4 | -1 | 1-2 | $2{ }^{-2}$ | -2 0 |  | -1 | -1 | 0 | -2 | -1 | -1 | -1 | -1 | -2 | -1 | 1 | 0 | -3 | 3 -2 | 2 |
| R |  | 5 | 0 |  | -2 | 3 | 1 | 0 | -2 | 0 | -3 | -2 | 2 | -1 | -3 |  | -1 | -1 | - | -2 | 2 |
| N | -2 | 0 | 6 |  | $1{ }^{-}$ |  | 0 | 0 | 0 | 1 | -3 | -3 | 0 | -2 | -3 | -2 | 1 | 0 | -1 | 1 -2 |  |
| D |  | -2 | 1 |  | 6 |  | 0 | 2 | -1 | -1 | 3 | -4 | 1 | -3 | -3 | -1 | 0 | -1 | -1 | 4 -3 | -3 |
| C | 0 | -3 | -3 | 3 - |  |  | -3 | -4 | -3 | -3 | -1 | -1 | -3 | -1 | -2 |  | -1 | -1 | -2 | 2 |  |
| Q |  | 1 | 0 |  | 0 |  | 5 | 2 | -2 | 0 | -3 | -2 | 1 | 0 | -3 | -1 | - | -1 | 1-2 | 2 | -2 |
| E |  | 0 | 0 |  | 2 |  | 2 | 5 | -2 | 0 | -3 | -3 | 1 | -2 | -3 | -1 | 0 | -1 | - -3 | 3 | 2 |
| G | 0 | -2 | - | - | -1 | 3 | -2 | -2 | 6 | -2 | -4 | -4 | -2 | -3 | -3 | -2 | 0 | -2 | -2 | 2 -3 | -3 |
| H |  | 0 | 1 |  | -1 | 3 | 0 | 0 | -2 | 8 | -3 | - | -1 | -2 | -1 |  | -1 | -2 | -2 | 2 | -3 |
| 1 |  | -3 | -3 | 3 |  |  | -3 | -3 | 4 | -3 | 4 | 2 | -3 | 1 | 0 |  | - | -1 | -3 | 3 -1 | 13 |
| L |  | -2 | -3 |  |  |  | -2 | 3 | -4 | - | 2 | 4 | -2 | 2 | 0 |  |  | -1 | -2 | $2-1$ | 1 |
| K |  | 2 | 0 |  | -1 |  | 1 | 1 | -2 | -1 | -3 | -2 | 5 | -1 | -3 |  | 0 | -1 | -3 | $3-2$ | -2 |
| M |  | -1 | -2 | - |  |  | 0 | -2 | -3 | -2 | 1 | 2 | -1 | 5 | 0 |  |  | -1 | -1-1 | 1 -1 | 1 |
| F |  | -3 | -3 | 3 | -3 | 2 | -3 | -3 | -3 | -1 | 0 | 0 | -3 | 0 | - |  |  | -2 | 1 |  |  |
| P |  | -2 | -2 | $2-$ | -1 | 3 | -1 | -1 | -2 | -2 | -3 | -3 | -1 | -2 | -4 | 7 | -1 | -1 | -1-4 | 4 -3 | 2 |
| S | 1 | -1 | 1 | 0 | 0 | -1 | 0 | 0 | 0 | -1 | -2 | -2 | 0 | -1 | -2 | -1 | 4 | 1 | -3 | -2 |  |
| T |  | -1 | 10 |  |  |  |  |  | -2 | -2 |  | -1 | -1 | -1 | -2 | -1 | 1 | 5 | -2 | 2 | 2 |
| W |  | -3 | -4 | 4 |  |  | -2 | -3 | -2 | -2 | -3 | 2 | -3 | -1 | 1 |  |  | -2 | 11 | 12 | 3 |
|  |  | -2 | -2 |  |  |  |  | -2 | -3 | 2 |  |  |  | -1 | 3 |  |  | -2 | 2 |  |  |
|  |  | -3 | -3 | 3 | - | 1 | -2 | -2 | -3 | -3 | 3 | 1 | -2 | 1 | -1 |  |  | 0 | -3 | 3 | 4 |

## BLOSUM62

default matrix
for protein
sequence
comparison

## Multiple Sequence Alignment

| エントリ名 | 位置 |  | 1 | 10 | 20 | 30 | 40 | 50 | 60 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| tyrocidine－I＿［ty | 1 | 47 |  | CIGGVGLAR |  |  |  | GD |  |
| gramicidin－S－I＿［ | 1 | 47 |  | CIGGEGLAR | TS | NP |  | GD |  |
| gramicidin－S－II＿ | 1 | 47 |  | YI SGANVGR | TAE | ADP |  | TGD |  |
| ACV－domain－1＿Pen | 1 | 55 |  | HIGGLGI SKG | TPH | PNP | LG | TGD | －NG |
| ACV－domain－1＿Asp | 1 | 55 |  | HIGGLGISKG | TPQ | PNP | ELG | TGD | －NG |
| ACV－domain－2＿Pen | 1 | 57 |  | YLGGEGVVRG | VTAE | PNP | REG | TGD | SSG |
| ACV－domain－2＿Asp | 1 | 57 |  | YLGGEGVARG | VTA | RNP |  | TGD |  |
| ACV－domain－3＿Pen | 1 | 55 |  | YLAGDSVTRG | TDQ | PNP |  | TGD |  |
| ACV－domain－3＿Asp | 1 | 55 |  | YLAGDCVARG | TGD | QNPF | ACG | TGD |  |
| enterobactin＿［en | 1 | 41 |  | MTRGPYTFRG | HNAS | ANG |  | SGD |  |
| angR－protein＿［an | 1 | 44 |  | WIGGDGIALG | KTQA |  |  | TGD |  |
| luciferase＿Photi | 1 | 41 |  | CVRGPMIMSG | ATN |  |  | GD |  |
| luciferase＿Lucio | 1 | 41 |  | CVKGPMLMKG | ATKE | EEGW |  | TGD |  |
| luciferase－green | 1 | 41 |  | CIKGPMVSKG | ATK |  |  | SGD |  |
| luciferase－y－gre | 1 | 41 |  | CVKGPMVSKG | ATKE |  |  | SGD |  |
| luciferase－yello | 1 | 41 |  | CIKGPMVSKG | ATKE |  |  | SGD |  |
| Iuciferase－orang | 1 | 41 |  | CIKGPMVSKG |  |  |  |  |  |
| antigen＿［octapep | 1 | 41 |  | LIKSDSMFSG | STE |  |  | TGD |  |
| acyl－CoA＿rat＿［1o | 1 | 41 |  | CVKGANVFKG | RTAE |  |  | TGD |  |
| acyl－CoA＿human＿［ | 1 | 41 |  | CVKGPNVFQG | KTAE |  |  | TGD |  |
| CoA－ligase＿rice＿ | 1 | 41 |  | CIRGQQIMKG |  |  |  |  |  |
| 4CL1－CoA－ligase＿ | 1 | 41 |  | CIRGDQIMKG |  |  |  |  |  |
| 4CL2－CoA－ligase＿ | 1 | 41 |  | CIRGDQIMKG | STRT |  |  | TGD |  |
| St4CL－2a－CoA－1ig | 1 | 41 |  | CIRGDQIMKG | ATAR |  |  | TGD |  |
| St4CL－1－CoA－liga | 1 | 41 |  | CIRGDQIMKG |  |  |  | TGD I |  |
| St4CL－2b－CoA－I ig | 1 | 41 |  | CIRGDQIMKG |  |  |  | TGD |  |
| acetyl－CoA＿Neuro | 1 | 26 |  |  |  |  |  | TGD |  |
| acetyl－CoA＿Asper | 1 | 26 |  |  |  |  |  |  |  |

Multiple alignment example： 28 Luciferase proteins from fireflies（part）

## Multiple Alignment Score

Sum of Pairs（SP）score
position


|  |
| :---: |
|  |  |
|  |  |


cf．Minimum entropy score （Theoretically more favorable）
$\mathrm{S}(\mathrm{X}, \mathrm{Y})$ is similarty score， $S\left(X,{ }^{〔}-{ }^{\prime}\right)=w(w<=0$ ，gap penalty） and $S\left({ }^{( }-{ }^{\prime},{ }^{-}-1\right)=0$ ．

## Multiple Alignment Score

for DNA sequences


$$
\begin{aligned}
& \text { N k-1 } \\
& \operatorname{Score}\left(\operatorname{Seq}_{1}(\mathrm{i}), \operatorname{Seq}_{2}(\mathrm{i}), \ldots \operatorname{Seq}_{\mathrm{N}}(\mathrm{i})\right)=\boldsymbol{\Sigma} \quad \boldsymbol{\Sigma} \operatorname{S}\left(\operatorname{Seq}_{\mathrm{k}}(\mathrm{i}), \operatorname{Seq}_{1}(\mathrm{i})\right) \\
& \mathrm{k}=1 \quad \mathrm{l}=1 \\
& =S\left({ }^{\prime} A^{\prime}, \mathrm{G}^{\prime}\right)+ \\
& \text { S('-','G')+S('-',','A')+ } \\
& \text { S('-','G')+S('-','A')+S('-','-') } \\
& =(-1 \text { unmatch })+4 \times(-1 \text { gap })+0 \\
& =-5
\end{aligned}
$$

## Multiple Alignment by DP



3－dimentional Multiple Alignment
Time complexity：

$$
O(\mathcal{C} m n)
$$

Space complexity：
$O(\ell m n)$

Note： $\mathbf{N}$－dimentional direct $D P$ with length $L$ will consume $O\left(L^{N}\right)$ time and spâce．

Heuristic approaches for multiple alignment
(1) Star method


|  | Seq 1 | Seq 2 | Seq 3 | Sum |
| :--- | ---: | ---: | ---: | ---: |
| Seq 1 |  | 3 | 6 | 9 |
| Seq 2 | 3 |  | 9 | 12 |
| Seq 3 | 6 | 9 |  | 15 |



## Heuristic approaches for multiple alignment

（2）Progressive（Tree－based）method


## Heuristic approaches for multiple alignment <br> （3）Iterative improving method


（1）Make an initial multiple alignment．
（2）Choose one sequence SeqC（randomly）
（3）Perform sequence－profile alignment between SeqC and the profile made from rest of sequences．
（4）go to（2）unless no progress obtained or iteration count reached to the limitation．

By random selection， it is expected to escape from local minimum．


