

#11 RNA Secondary Structure Topics: Prediction

- RNA Secondary Structure
 - Hairpin/Bulge/Internal/Multi loops, Stacking region
 - Pseudoknot
- Nussinov algorithm
 - Initialization, Matrix fill stage, Traceback stage
- Some Expansions
- Zuker method

RNA Secondary Structures

Hairpin loop

HCV virus RNA structure

http://puglisi.stanford.edu/research.html

Nussinov Algorithm - Maximizing Base Pair Counts

такүа тесн

maximize

 $E(1,L) = \Sigma \, \delta(i,j)$ 1≦i<j≦L

where $\delta(i,j) = 1$ if base(i) and base(j) are hydrogen bonded, and $\delta(i,j) = 0$ otherwise.

Nussinov R, Piecznik G, Grigg JR and Kleitman DJ : "Algorithms for loop matchings". SIAM Journal on Applied Mathematics (1978). Nussinov R and Jacobson AB : "Fast algorithm for predicting the secondary structure of single-stranded RNA", *Proc Natl Acad Sci* USA, 77(11):6309-13 (1980).

DP-based Algorithm by Nussinov

Recursive formulation of *E(i, j)*

Initialization

С

G

G

Α

			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
ITIC	J U																
С	1		0														
G	2	•	0	0													
G	3	•		0	0												
Α	4				0	0											
С	5					0	0										
С	6						0	0									
С	7							0	0								
Α	8	•							0	0							
G	9	•								0	0						
Α	10										0	0					
С	11											0	0				
U	12												0	0			
U	13													0	0		
U	14														0	0	
С	15															0	0

С

С

G

A

A

С

U

U

С

С

U

Matrix fill stage: diagonal to top-right

такүа Несн-

Matrix fill stage (cont'd)

$\max_{i < k < j} \{ E(i,k) + E(k+1, j) \}(d) + \bigcirc$

We need a scanning on the diagonal line for possible position of the bifurcation point \triangle . The coordinate k is within *i*<*k*<*j*. The score is the maximum value of sum of score at and **k**= **k**= i+1 i-1 i+1 i **k**= *i*+1 *i*+1 *k*+1 **k**= j-1

C	G	G	A	C	С	С	Α	G	Α	С	U	U	U	С	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Matrix Fill
	1	_			-							-			stage
0	,1														
0	0	0													2nd
	0	0	0												diagonal
		0	0	0											length=2
			0	0	0										
				0	0	0									
					0	0	0								
						0	0	0							
							0	0	0						
								0	0	0					
									0	0	0				
										0	0	0			
											0	0	0		
												0	0	0	
													0	0	

С	1
G	2
G	3
Α	4
С	5
С	6
С	7
Α	8
G	9
Α	10
С	11
U	12
U	13
U	14
С	15

	C	G	G	Α	С	С	С	A	G	Α	С	U	U	U	С	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Matrix Fill
			Đ		1			-				•				etano
	0	1	1	1	2											Stage
2	0	0	<u>/0</u>	0	1	2										5 th
3		0	0	0	1	1	1									diagonal
ŀ			0	0	0	0	0	0								length=5
5				0	0	0	0	0	1							iongti o
5					0	0	0	0	1	1						
,						0	0	0	1	1	1					
3							0	0	0	0	1	2				
)								0	0	0	1	1	2			\bigcirc
0									0	0	0	1	1	1		bifurcation
1										0	0	0	0	0	0	occurred.
2											0	0	0	0	0	
3												0	0	0	0	
4													0	0	0	
5														0	0	°

	С	U	U	U	С	Α	G	Α	С	С	С	Α	G	G	С
Matrix	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
Fill sta									•				•		
	5	5	4	4	3	3	3	2	2	2	2	1	1	1	0
Finishe	5	5	4	4	3	3	3	2	2	2	1	0	<u>/</u> 0	0	0
length	4	4	3	3	2	2	2	1	1	1	1	0	0	0	
	3	3	3	2	1	1	1	0	0	0	0	0	0		
	3	3	2	2	1	1	1	0	0	0	0	0			
	3	3	2	2	1	1	1	0	0	0	0				
,	3	3	2	2	1	1	1	0	0	0					
	3	3	2	2	1	0	0	0	0						
\bigcirc	2	2	2	1	1	0	0	0							
bifurcat	1	1	1	1	0	0	0								
occurre	0	0	0	0	0	0									
	0	0	0	0	0										
	0	0	0	0											
	0	0	0												
	0	0													

С 1 G 2 G 3 Α 4 С 5 С 6 С 7 8 Α G 9 **A** 10 С 11 U 12 13 U U 14 С 15 II stage nished

ength=15

furcation curred.

Traceback stage

Initialization: Push (1, L) onto stack

Recursion: Repeat until stack is empty:

- pop (i, j).
 if i >= j continue; else if E(i+1, j) = E(i, j) push (i+1, j); else if E(i, j-1) = E(i, j) push (i, j-1); else if E(i+1, j-1)+δ(i,j) = E(i, j) : - record i, j base pair; - push (i+1, j-1) else for k=i+1 to j-1: if E(i,k)+E(k+1,j) = E(i,j):
 - push (i, k);
 - push (k+1, j);
 - break;

n.	С	G	G	Α	С	С	С	Α	G	Α	С	U	U	U	С
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Traceback stage

С	1
G	2
G	3
Α	4
С	5
С	6
С	7
Α	8
G	9
Α	10
С	11
U	12
U	13
U	14
С	15

0	1	1	1	2	2	2	2	3	3	3	4	4	5	5
0	0	0	0	1,	2	2	2	3	3	3	4	4	5	_5
	0	0	0,	~1	1	1	1	2	2	2	3	3	4	4
		0	0	0	0	0	0	1	1	1	2	3	3	3
			0	0	0	0	0	1	1	1	2	2	3	3
				0	0	0	0	1	1	1	2	2	3	3
					0	0	0	1	1	1	2	2	3	3
						0	0	0	0	1	2	2,	3	3
							0	0	0	1	1,	, 2 ⁴	2	2
								0	0	Q	, 1	1	1	1
									0	0	0	0	0	0
										0	0	0	0	0
											0	0	0	0
												0	0	0
													0	0

1) different score for base pairs

G-C, C-G: +3 A-U, U-A: +2 G-U, U-G: +1 others: -1

2) minimum hairpin loop length

3) realistic energy function

 \rightarrow Zuker (or Zuker-Stiegler) method

4) coping with "pseudoknot" structure

Zuker Method

•Energy score for "stacking region" (see adjacent two base pairs)

A	C	G	U			Α	C	G	U
	5'> AX UY	3'					5' - 0 6	–> 3' x ïY	
0. 0. -0.	3' < 4 0.4 4 0.4 4 -1.7 9 0.4	5' 0.4 -2.1 0.4 -1.0	-0.9 0.4 -0.5 0.4			0. 0. 0.	3' < 4 0 4 0 4 -2 7 0	(.4 -1.8 .9 0.4 .4 -1.2 .9 0.4
5' -1	A G- U C- 7 kca	- - 5' I/mo	į	5'A U . 2 1 1	C G 5' kcal/m				

Michael Zuker

MFOLD prediction software

Energy score for several loops

D.H. Mathews, J. Sabina, M. Zuker & D.H. Turner Expanded Sequence Dependence of Thermodynamic Parameters Improves Prediction of RNA Secondary Structure *J. Mol. Biol.* 288, 911-940 (1999)