\#10

Genome-wide Comparison

Topics:

- BLAT
-2-D Dot Plot
- Edit Distance between Genome Sequences
- Inversion, Edit Distance,
- Comparing X chromosome of human and mouse
- Graph representation (Reality and Desired graph)
- Independent Alternative Cycles

BLAT

Fast comparison of DNA sequences versus a genomic DNA. Developed by James Kent (UCSC). Target genome DNA sequence is pre-processed and a huge index table is prepared. In some cases, about 500-times faster than BLAST.

James Kent

| AAAAA | \longrightarrow | $1,1012,2245,4560, \ldots$ |
| :--- | :--- | :--- | | (G / K) - subsequences are |
| :--- |
| AAAAC |$\longrightarrow 2,2246,3135,5235, \ldots \quad$ stored in an index table (like left fig.).

BLAT (2)

Probability of having at least one exact match of K-mer in HR

$$
P=1-\left(1-P_{1}\right)^{\top}=1-\left(1-M^{K}\right)^{\top}
$$

If any one exact match with K-mer is discovered, BLAT assumes the hit is within a homologous region and start detailed search around the hit block.

BLAT (3)

Query seq. (length=Q)

From a query sequence, all K-mers with overlapping are examined. Then frequency of random hit is about

$$
F=(Q-K+1) \times(G / K) \times(1 / 4)^{K}
$$

Too small K value brings many noisy hits. Too large K value leads to miss important HR.

Alternative 1: Allow 1-miss match in K-mer (not exact K-mer match)
Alternative 2: Request to have N (for example, $\mathrm{N}=2$) K-mer exact matches in HR. Use relatively small K value, but use $\mathrm{N}>1$ for balancing.

Memo: $\quad P_{1}$ is the probability of observing one random hit within a HR.
The probability of observing multiple N hits within HR (T blocks) is binomial distribution $P_{n}={ }_{T} C_{n} \times P_{1}{ }^{n} \times\left(1-P_{1}\right)^{T-n}$
The P -value of having N (or more) hits is
$P(x>=N)=P_{N}+P_{N+1}+\ldots .+P_{T}$
Choose appropriate K and N values to have small enough P-value.

2－D Dot Plot

Compare two sequences with a fixed－length window（for example $\mathrm{K}=7, \mathrm{~K}=29$ ） Put a mark（＋）or dot（ \cdot ）with a place of exact match between two sequences． For DNA sequences，＂reverse complimentary strand＂is simultaneously examined．

2－D Dot Plot

Genome－wide comparison

horizontal axis：MED4
（prochlorophytes 原核緑藻，surface type） vertical axis：MIT9313 （prochlorophytes 原核緑藻，deep sea）

Discovering Genomics， Proteomics，and Bioinformatics （CSHL press）
a series of homologous regions

X chromosome (human and mouse)

ravp teru X chromosome (Mouse and Human)

"Edit distance" between Mouse and Human genome is " 7 " inversion operation. However, note that mouse is not a direct ancestor of human, and vice versa.

Graph Representation

Mouse X chromosome

Outer solid lines Reality graph (order in mouse)

Inner dotted lines Desired graph (order in human)

Discovering Genomics,
Proteomics, and Bioinformatics (CSHL press)

Independent Alternative Cycles

Alternative Cycle:

A closed loop which is composed of alternatively connected Reality edges (solid), and Desired edge (dotted).

C = number of independent (non overlapping) alternative cycles.

Required number of "inversion" operation is (almost always) given by

$$
N+1-C
$$

where N is gene number (=11).

Discovering Genomics,
Proteomics, and Bioinformatics (CSHL press)

$n+1=12$ intervals. 12 satisfaction marks :) (correct gene orders) required in total. 7 inversion operations. 4 double satisfactions. 1 satisfaction from its beginning.

Inversion \#7

Finish

$$
\begin{array}{lllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11
\end{array}
$$

