

Bioinformatics, Yutaka Akiyama (Tokyo Tech)

#10 Genome-wide Comparison

Topics:

- •BLAT
- •2-D Dot Plot
- •Edit Distance between Genome Sequences
- Inversion, Edit Distance,
- Comparing X chromosome of human and mouse
- Graph representation (Reality and Desired graph)
- Independent Alternative Cycles

BLAT

Fast comparison of DNA sequences versus a genomic DNA. Developed by James Kent (UCSC). Target genome DNA sequence is pre-processed and a huge index table is prepared.

In some cases, about 500-times faster than BLAST.

James Kent

		Genome Seq. (Length G)
seq. length= <i>K</i>	X	Genome Sequence is chopped into " <i>K</i> -mers" <u>without</u> overlapping.
		, 2245, 4560, (G/K) - subsequences are , 3135, 5235, stored in an index table (like left fig.). Query input sequence is searched against this table.
• • • •		 Approximation: 1) search "exact match" only 2) <i>K</i>-mer with another boundary (like subseq. X) is not subject to search

Probability of having at least one exact match of K-mer in HR

 $P = 1 - (1 - P_1)^{T} = 1 - (1 - M^{K})^{T}$

If any one exact match with K-mer is discovered, BLAT assumes the hit is within a homologous region and start detailed search around the hit block.

BLAT (3)

Query seq. (length=Q)

From a query sequence, all K-mers <u>with overlapping</u> are examined. Then frequency of random hit is about

$$F = (Q - K + 1) \times (G / K) \times (1 / 4)^{K}$$

Too small *K* value brings many noisy hits. Too large *K* value leads to miss important HR.

Alternative 1: Allow 1-miss match in K-mer (not exact K-mer match)

- Alternative 2: Request to have N (for example, N=2) K-mer exact matches in HR. Use relatively small K value, but use N > 1 for balancing.
 - Memo: P₁ is the probability of observing one **random** hit within a HR. The probability of observing multiple N hits within HR (T blocks) is binomial distribution $P_n = {}_T C_n \times P_1 {}^n \times (1 - P_1)^{T-n}$ The P-value of having N (or more) hits is $P(x \ge N) = P_N + P_{N+1} + \dots + P_T$ Choose appropriate K and N values to have small enough P-value.

Compare two sequences with a <u>fixed-length window</u> (for example K=7, K=29) Put a mark (+) or dot (·) with a place of exact match between two sequences. For DNA sequences, "<u>reverse complimentary strand</u>" is simultaneously examined.

2-D Dot Plot

Genome-wide comparison

horizontal axis: MED4 (prochlorophytes 原核緑藻, surface type) vertical axis: MIT9313 (prochlorophytes 原核緑藻, deep sea)

Discovering Genomics, Proteomics, and Bioinformatics (CSHL press)

a series of homologous regions

a series of <u>inverted</u> homologous regions

X chromosome (human and mouse)

X chromosome (Mouse and Human)

такүа тесн–

S)

Mouse X chromosome

Graph Representation

Outer solid lines Reality graph (order in mouse)

Inner dotted lines Desired graph (order in human)

Discovering Genomics, Proteomics, and Bioinformatics (CSHL press)

F

Independent Alternative Cycles

Alternative Cycle:

A closed loop which is composed of alternatively connected Reality edges (solid), and Desired edge (dotted).

4

C = number of independent (non overlapping) alternative cycles.

Required number of "inversion" operation is (almost always) given by

N+1-C

where N is gene number (=11).

Discovering Genomics, Proteomics, and Bioinformatics (CSHL press)

C=5

come to outer place.

Inversion #2

√ -**∪**

Inversion #7

