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(Binary) Classification Problent®”

Output values are y; = £1

We want to predict whether output values
of unlearned input points are
positive/negative.

Multi-class problem can be transferred to
several binary classification problems:

e One-versus-rest
e One-versus-one



(Binary) Classification Problent

In classification, we may still use the same
learning methods, e.g., quadratically-
constrained least-squares:

&QCLS = argmin [JLs(a) == )\(Ra, Oz>]
o €RY

Prediction:
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O/1-Loss

In classification, only the sign of the
learned function Is used.

It IS natural to use 0/1-loss instead of
squared-loss Jrs(a):

J0/1 ZI (Slgﬂ ) # yz)

[0 (a=b
taro={ Gz

Jo/1(a) corresponds to the number of
misclassified samples (thus natural).



Hinge-Loss
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However, Jy/1(a) IS non-convex so we may
not be able to obtain the global minimizer.

Use hinge-loss as an approximation:

Ju(a) = Zmax (0,1 — u;)

Topi(e) = 5 3 (1 = sign (w)
Jrs(a) = Z (1—us)*

1=1

Note :y; =1, 1/y; = y;

A

U; = f(il?z)yz

Hinge
0/1




How to Obtain Solutions '

Qsy ) = argmin [JH(Ot) == )\<RO£, OC>]
acRP

Jr(a) = Zmax (0,1 — u;)

How to deal with “max”? Use following lemma:

Lemma:
max(0,1 —u) = Iglilélf subject to £ > 1 —u
c
£>0

Proof: Constraints are § > max(0,1 — u),
so the lemma holds. Q.E.D.




How to Obtain Solutions (cont.)"

So we have

Jr (o) = gg%(ln,@ subject to € > 1,, — u
>0,

Then asv is given as

agsyy = argmin [(1,,€) + M(Ra, )]
o cRV €cRn
subject to £ > 1,, —u

§ >0,



Support Vector Machines "

We focus on the following setting:

E o; K (x, x;)

o R=—K Ki,j:K(wiamj)

Putting A = (2C)~* (convention), we have

AN . 1
sy )y = arginin {C(ln,ﬂ + —(Ka,a)
o, EER? 2
subject to £ > 1,, — u
§>0,

S

U; = f(flfz)yz



Efficient Formulation 176

The SVM solution can be obtained by

syl = [BSVM]?J%

/BSVM — argimax Zﬁz A Z Bzﬁjyzy] 1,9

BeER™

7,3 1
subject to 0,, < 3 < Cln

The number of parameters Is decreased
from 2n ton !

This corresponds to considering the Wolfe
dual (details are omitted).



Examples 1

. : |z —'||°
Gaussian kernel: K(x,x") = exp 52
C



Examples (cont.) L1

Large C Small C
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Examples
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Original Derivation of SVMs 120

The way SVMs were introduced today Is
quite different from the original derivation.

Let’s briefly follow the original derivation.
e Hyper-plane classifier

e \VC theory

e Margin maximization

e Soft margin

e Kernel trick



Hyper-plane Classifier

Separate sample space by hyper-plane.

find w, b
such that yzf(mz) >1 fori=1,...,n.
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Margin

Margin: “Gap” between two classes

Small margin Large margin Small margin



Vapnik-Chevonenkis Theory 1%
Generalization error:

f] = // I(f(x) # y)p(z, y)dzdy

Empirical error:
R 1
emp — E Z wz 7é yz

0 (a=0b)
(a#b):{ 1 (a#b)

Generalization error bound (*VC bound”)

R[f] < Remplf] + \/711 (h <log 27” 4 1) + log %)

with probability 1 — ¢

h : VC dimension (model complexity)



Vapnik-Chevonenkis Theory (cont?)
VC bound:

R[f] < Remplf] + \/% (h (log %" 1 1) + log %)

N— 7
~—

Monotone decreasing w.r.t. VC dimension i (h < n)

If samples are linear separable, empirical

error Is zero. .
Remp [f] =0

The larger margin is, the smaller VC dim is.

‘ In VC theory, maximum
margin classifier is optimal




Optimal Hyper-plane Classifier™

Separate two classes with
maximum margin

Margin 1/||w||
>
X X § §O°
x X : Opo
x X 1,0 ©
Small margin Large margin Small margin
min ||w)||?
w,b

AN

subject to y;f(x;) >1 fori=1,...,n.



Soft Margin

If samples are not linearly separable,
margin cannot be defined.

Allow small error ¢;.

n
min [|w]* + C ) ¢
w,b —

S

subject to y; f(x;) > 1 —&;

>0 fore=1,...,n.
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Non-linear Extension  **¢/

Transform samples to a feature space by
a non-linear mapping ¢(x) .

Then find the maximum margin hyper-
plane In the feature space.

Input space Feature space




Kernel Trick 188

Compute inner product in the feature space
by a kernel function:

(P(xi), p(x5)) = K(@i, x;)
Ve,x', K(x,x') >0

E.g., Gaussian kernel
K(z,2') = exp (— | — 2'||*/c?)

Any linear algorithm represented by inner
product can be non-linearized by kernels
e E.g.: Support vector machine, k-nearest neighbor

classifier, principal component analysis, linear
discriminant analysis, k-means clustering,



Notification of 189

Final Assignment

Apply supervised learning technigues to
your data set and analyze it.

Write your opinion about this course

Final report deadline: Aug 6% (Fri.)
E-mail submission is also accepted!
sugi@cs.titech.ac.jp



Mini-Workshop on Data Mining™

On July 20t (final class), we have a
mini-workshop on data mining, instead
of regular lecture.

Several students present their data
mining results.

Those who give a talk at the workshop
will have very good grades!



Mini-Workshop on Data Mining™*

Application (just to declare that you want
to give a presentation) deadline: June 29",

Presentation: 10-15(?) minutes.

e Specification of your dataset
e Employed methods
e Outcome

OHP or projector may be used.
Slides should be in English.

Better to speak in English, but Japanese
Is also allowed.



June 22nd
June 29t
July 6%

July 13t

July 20t
July 27t

Schedule 192

. Preparation for workshop

(no lecture)

: Robust method

(regular lecture)

: Neural Networks

(regular lecture)

. Preparation for workshop

(no lecture)

. Mini-workshop
. Mini-workshop (if necessary)



Homework 199
Prepare a toy binary classification problem
(say 2-dim Input) and test SVM. Then analyze
the results by varying experimental conditions
(datasets, kernels, regularization parameter C
etc.).

e Software Is avallable from, e.qg.,
http://www.support-vector.net/software.html

e You may play with Java implementation, e.g.,
http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml



