Pattern Information Processing:⁹⁸ Sparse Methods

Masashi Sugiyama (Department of Computer Science)

Contact: W8E-505 <u>sugi@cs.titech.ac.jp</u> http://sugiyama-www.cs.titech.ac.jp/~sugi/

Sparseness and Continuous Model Choice

Two approaches to avoiding over-fitting:

	Sparseness	eness Model parameter	
Subspace LS	Yes	Discrete	
Quadratically constrained LS	No	Continuous	

We want to have sparseness and continuous model choice at the same time.

Today's Plan

100

Sparse learning method

- How to deal with absolute values in optimization
- Standard form of quadratic programs

Non-Linear Learning for ¹⁰¹ Linear / Kernel Models

Linear / kernel models

$$\hat{f}(\boldsymbol{x}) = \sum_{i=1}^{b} \alpha_i \varphi_i(\boldsymbol{x})$$
 $\hat{f}(\boldsymbol{x}) = \sum_{i=1}^{n} \alpha_i K(\boldsymbol{x}, \boldsymbol{x}_i)$

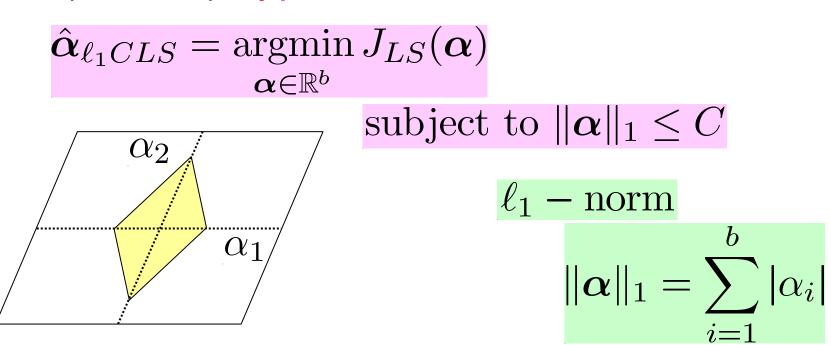
Non-linear learning

$$\hat{oldsymbol{lpha}} = oldsymbol{L}(oldsymbol{y})$$

 $L(\cdot)$:Non-linear function

I1-Constrained LS

Restrict the search space within a (rotated) hyper-cube.

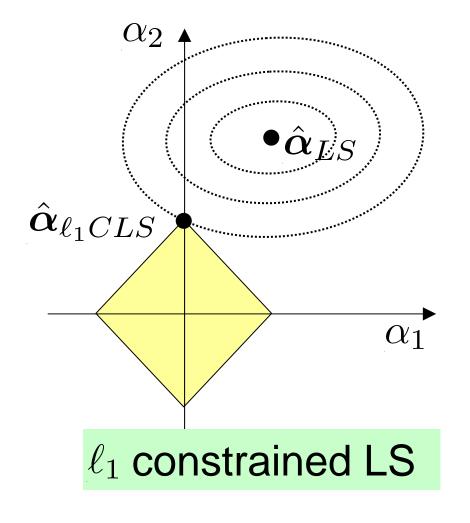


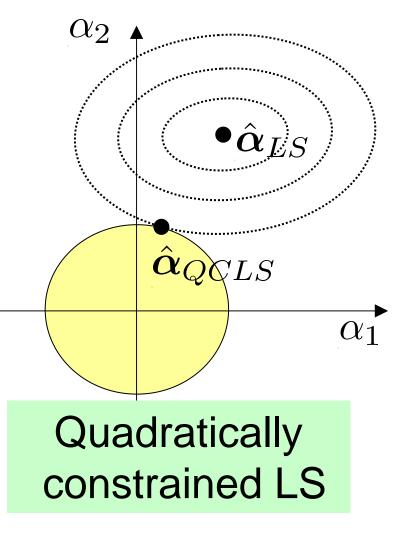
See:

Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society, Series B, 58(1), 267-288,1996. Chen, Donoho & Saunders, Atomic decomposition by basis pursuit, SIAM Journal on Scientific Computing, 20(1), 33-61, 1998.

Why Sparse?

The solution is often exactly on an axis.





103

How to Obtain Solutions

104

Lagrangian: J_{ℓ1CLS}(α) = J_{LS}(α) + λ(||α||₁ - C)
λ :Lagrange multiplier
Similarly to QCLS, we practically start from λ (≥ 0) and solve

$$\hat{\boldsymbol{\alpha}}_{\ell_1 CLS} = \operatorname*{argmin}_{\boldsymbol{\alpha} \in \mathbb{R}^b} J_{\ell_1 CLS}(\boldsymbol{\alpha})$$

It is often called ℓ_1 regularized LS.

How to Obtain Solutions (cont.)⁰⁵

How to deal with ℓ_1 -norm?

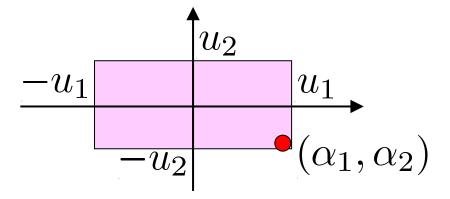
Use the following lemma:

Lemma
$$\|\boldsymbol{\alpha}\|_1 = \min_{\boldsymbol{u} \in \mathbb{R}^b} \sum_{i=1}^b u_i$$

subject to $-\boldsymbol{u} \leq \boldsymbol{\alpha} \leq \boldsymbol{u},$

Note: Inequality in constraint is component-wise

Intuition: Obtain smallest box that includes α



(Q.E.D.)

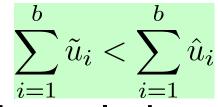
Proof of Lemma

Proof: Let

$$\hat{\boldsymbol{u}} = \operatorname*{argmin}_{\boldsymbol{u} \in \mathbb{R}^b} \sum_{i=1}^b u_i$$

subject to $-\boldsymbol{u} \leq \boldsymbol{\alpha} \leq \boldsymbol{u},$

The constraint implies $\hat{u}_i \geq |\alpha_i|$. Suppose $\hat{u}_i > |\alpha_i|$. Then such \hat{u}_i is not a solution since $\tilde{u}_i = |\alpha_i|$ gives a smaller value:



This implies that the solution satisfies $\hat{u}_i = |\alpha_i|$, which yields $\sum_{i=1} \hat{u}_i = \sum_{i=1} |\alpha_i| = \|\boldsymbol{\alpha}\|_1$

How to Obtain Solutions (cont.)⁰⁷ $\hat{\alpha}_{\ell_1 CLS} = \underset{\boldsymbol{\alpha} \in \mathbb{R}^b}{\operatorname{argmin}} J_{\ell_1 CLS}(\boldsymbol{\alpha})$

$$J_{\ell_1 CLS}(\boldsymbol{\alpha}) = J_{LS}(\boldsymbol{\alpha}) + \lambda \|\boldsymbol{\alpha}\|_1$$

 $\hat{\alpha}_{\ell_1 CLS}$ is given as the solution of

$$\min_{\boldsymbol{\alpha}, \boldsymbol{u} \in \mathbb{R}^{b}} \left[J_{LS}(\boldsymbol{\alpha}) + \lambda \sum_{i=1}^{b} u_{i} \right]$$

subject to $-\boldsymbol{u} < \boldsymbol{\alpha} < \boldsymbol{u},$

$$J_{LS}(\boldsymbol{\alpha}) = \sum_{i=1}^{n} \left(\hat{f}(\boldsymbol{x}_i) - y_i \right)^2$$
$$= \|\boldsymbol{X}\boldsymbol{\alpha} - \boldsymbol{y}\|^2$$

Linearly Constrained Quadratic¹⁰⁸ Programming Problem

Standard optimization software can solve the following form of linearly constrained quadratic programming problems.

$$\min_{\boldsymbol{\beta}} \left[\frac{1}{2} \langle \boldsymbol{Q} \boldsymbol{\beta}, \boldsymbol{\beta} \rangle + \langle \boldsymbol{\beta}, \boldsymbol{q} \rangle \right]$$

subject to $Veta \leq v$ Geta = g

Transforming into Standard Form¹⁰⁹ Let $\beta = \begin{pmatrix} \alpha \\ u \end{pmatrix}$ $\Gamma_{\alpha} = (I_b, O_b)$ $\Gamma_{u} = (O_b, I_b)$ Then

$$egin{array}{rcl} lpha &=& \Gamma_{lpha}eta \ u &=& \Gamma_{u}eta \end{array}$$

Use these expressions and replace all $oldsymbol{lpha}, oldsymbol{u}$ with $oldsymbol{eta}$.

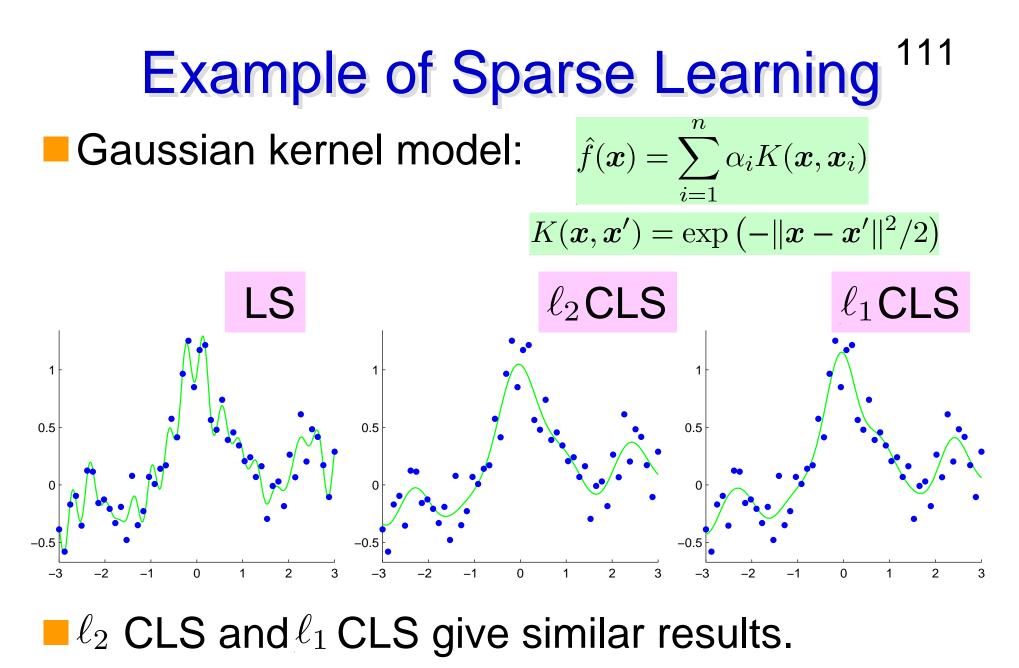
Standard Form

$$\min_{\boldsymbol{\beta}} \begin{bmatrix} \frac{1}{2} \langle \boldsymbol{Q}\boldsymbol{\beta},\boldsymbol{\beta} \rangle + \langle \boldsymbol{\beta},\boldsymbol{q} \rangle \end{bmatrix} \quad \begin{array}{l} \text{subject to } \boldsymbol{V}\boldsymbol{\beta} \leq \boldsymbol{v} \\ \boldsymbol{G}\boldsymbol{\beta} = \boldsymbol{g} \end{array}$$

 ℓ_1 -constrained LS can be expressed as

110

Proof: Homework!



27 out of 50 parameters are exactly zero in ℓ_1 .

Feature Selection

If ℓ_1 CLS is combined with linear model with respect to input,

$$\hat{f}(\boldsymbol{x}) = \boldsymbol{\alpha}^{\top} \boldsymbol{x}$$
 $\boldsymbol{x} = (x^{(1)}, x^{(2)}, \dots, x^{(d)})^{\top}$

some of the input variables are not used for

prediction.

Important features are automatically selected

112

Example: Gene selection

- Generally, 2^d combinations need to be tested for feature selection (cf. SLS).
- On the other hand, ℓ_1 CLS only involves a continuous model parameter λ .

Constrained LS

113

	Sparseness	Model parameter	Parameter learning
Subspace LS	Yes	Discrete	Analytic (Linear)
Quadratically constrained LS	No	Continuous	Analytic (Linear)
ℓ_1 constrained LS	Yes	Continuous	Iterative (Non-linear)

Notification of Final Assignment

- 1. Apply supervised learning techniques to your data set and analyze it.
- 2. Write your opinion about this course

 Final report deadline: Aug 6th (Fri.)
 E-mail submission is also accepted! sugi@cs.titech.ac.jp

Mini-Workshop on Data Mining¹⁵

- On July 20th (final class), we have a mini-workshop on data mining, instead of regular lecture.
- Several students present their data mining results.
- Those who give a talk at the workshop will have very good grades!

Mini-Workshop on Data Mining¹⁶

- Application (just to declare that you want to give a presentation) deadline: June 29th.
- Presentation: 10-15(?) minutes.
 - Specification of your dataset
 - Employed methods
 - Outcome
- OHP or projector may be used.
- Slides should be in English.
- Better to speak in English, but Japanese is also allowed.

Homework

117

1. Derive the standard quadratic programming form of ℓ_1 -constrained LS.

Homework (cont.)

- 2. For your own toy 1-dimensional data, perform simulations using
 - Gaussian kernel models
 - ℓ_1 -constraint least-squares learning
 - and analyze the results, e.g., by changing
 - Target functions
 - Number of samples
 - Noise level

Use 5-fold cross-validation for choosing

- Width of Gaussian kernel
- Regularization parameter

Compare the results of QCLS and ℓ_1 CLS, e.g., in terms of sparseness and accuracy.