Assignment 3 (June 11, submit by June 25)

Compute response accelerations and displacements of a SDOF system shown. The spring stiffness should be set so that the natural period of the system is 0.5s, 0.75s, 1s, 1.25s. 1.5s and 2s. Assume that the damping ratio is 0.05 and 0.2.

1) Plot the relative displacement and absolute acceleration shown below for each of the two damping ratios.

2) Plot the peak absolute acceleration and the peak relative displacement as shown below

Assignment 4 (June 11, submit by June 25)

Compute the force reduction factor for the JMA Kobe ground acceleration (1995 Kobe earthquake) at the the target displacement ductility factor μ_T =4. For this purpose, assume a linear and bilinear (elasto-plastic) SDOF system with the damping ratio of 0.05 shown.

- Compute the initial spring stiffness k₀ so that the natural period of the system T becomes 0.5s, and 1s.
- Determine the yield strength P_y so that the response ductility capacity is nearly 4 (4+/-0.1 based on iteration*.
- For computing the linear response, assume that P_y is sufficiently large so that the system stays in the elastic range.
- 4) Plot the response accelerations (Absolute accelerations) and response displacements (relative displacements).
- 5) Evaluate the force reduction factor for T=0.5 s and T=1s.
- 6) Evaluate the applicability of the equal displacement and equal energy assumptions.7) Evaluate the residual displacement.

*Iteration

 Assume P_y¹ appropriately, and compute the peak response displacement u_m¹
Evaluate the response displacement ductility factor μ¹ as

$$\mu^1 \equiv u_m^{-1} / u_y$$

3) If $\mu_1 > \mu_T$, increase P_y , and if $\mu_1 < \mu_T$, decrease P_y , and compute u_m^2 and μ_2 . 4) If μ_2 is with +/-0.1 from the target ductility factor μ_T , stop. Otherwise, continue the process of 2) and 3) until the convergence is achieved.

Plot the response displacements and accelerations

Fig. 2 Relative displacement responses

Evaluate the force reduction R factor as

$$R \equiv \frac{\text{Re stroring force}}{P_y}$$

 Restoring force of the elastic system is shown in the Excel at the right most line.

 \bullet $P_{\rm y}$ is the assumed yield strength of the SDOF system in the nonlinear analysis

Elasto-plastic Hysteresis (弾塑性履歴特性)

•Hysteresis of elasto-plastic system is generally represented as shown below.

In the numerical analysis, change of stiffness from the elastic stage to plastic stage can be controlled by Eq. (E9.1)

 However Eq. (E9.1) cannot control whether unloading occurs or not.

 Unloading from the plastic stage to the elastic stage can be controlled as

Ground acceleration record applied to a SDOF system

JMA Kobe Record

Process of Linear Dynamic Response Analysis

Linear Response of a SDOF System

$$----- \Delta t = 0.1s T_0 = 0.4s$$

Process of Nonlinear Dynamic Response Analysis

Nonlinear Response of a SDOF System

$$-----\Delta t = 0.1s$$
$$-----\Delta t = 0.002s$$

Excel-base dynamic response analysis program

	Linear	Nonlinear (Elastoplastic)
Manual	LDRA-1 (Same p	NLDRA-1 program)
Auto	LDRA-2	NLDRA-2

Developed by H. Matsuzaki