
Outline

• Mobility Degradation in UTB MOSFETs 
(20nm> TSOI > 5nm): Phonon Scattering

• Mobility Degradation in UTB MOSFETs 
(TSOI < 5nm): δTSOI-induced Scattering

• Coulomb Scattering in UTB MOSFETs

• Mobility in Double-Gate MOSFETs

Mobility Degradation in UTB MOSFETs

J.-H. Choi, EDL 16 (1995) 527.

Mobility degradation have been observed in SOI MOSFETs 
with TSOI of less than ~20nm.

Seoul National Univ.
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Possible Reasons for Mobility Degradation
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Crystal Quality

The crystal quality of SOI is the same as that of 
bulk Si.

H. Wang, EDL 14 (1994) p117.



Residual Stress
Raman Spectrum
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Increase of Phonon Scattering due 
to Quantum-Confinement Effects
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Electron mobility decreases in thinner TSOI.
µac ∝ |Winv| µac: acoustic phonon-limited mobility

S. Takagi, IEDM97, p219.TSOI
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Device Structure
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Effective Field [MV/cm]
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Mobility Degradation: TSOI > 5nm
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Mobility reduction in UTB MOSFETs with TSOI of greater 
than 5nm is due to the increase of phonon scattering.



Outline

• Mobility Degradation in UTB MOSFETs 
(20nm> TSOI > 5nm): Phonon Scattering

• Mobility Degradation in UTB MOSFETs 
(TSOI < 5nm): δTSOI-induced Scattering

• Coulomb Scattering in UTB MOSFETs

• Mobility in Double-Gate MOSFETs
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Relationship between Vth and ΔVth
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Hole Mobility at T=300K
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Hole Mobility as a function of TSOI

Hole mobility decreases monotonically as TSOI

decreases, which is attributable to the increase 
of phonon scattering in inversion layer.
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The increase of electron mobility with a decrease 
in TSOI is observed at Eeff of around –0.3MV/cm.
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Theoretical vs. Experimental
T=300K
Eeff=0.23MV/cm
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The enhancement is due 
to subband modulation 
effect.

agree well

The experimentally 
observed enhancement 
is also due to subband 
modulation effect.

Why mobility degradation even at 25K? 
Why small enhancement?

In order to clarify the reason,
the effect of SOI thickness on C-V and I-V 
characteristics are thoroughly investigated by 
comparing experimental data with self-
consistent-calculation data of Schrödinger
and Poisson equations.
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Temperature dependence of 
mobility (TSOI=2.48 nm)
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Outline

• Mobility Degradation in UTB MOSFETs 
(20nm> TSOI > 5nm): Phonon Scattering

• Mobility Degradation in UTB MOSFETs 
(TSOI < 5nm): δTSOI-induced Scattering

• Coulomb Scattering in UTB MOSFETs

• Mobility in Double-Gate MOSFETs

Interface States
generated by

Fowler-Nordheim Stress



Interface States induced by
Fowler-Nordheim (FN) Stress

O
xi

d
e

Ec

FN current

Interface States
are generated by 
FN Stress.

J. Koga et al., SSDM 1994, p895.

µCoulomb by Dit in Bulk FETs
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Coulomb Scattering
as a Function of TSOI

µCoulomb: thick vs thin SOI

Thinner SOI 
mobility agrees 
well with thicker 
SOI mobility in 
higher Ns regions.

Thinner SOI 
mobility is less 
than thicker SOI 
mobility in lower 
Ns regions.
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Why less µCoulomb in thinner TSOI?
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Smaller spread of wavefunctions in 
thinner TSOI
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Electron Wave Function

Lower Ns

Electric Potential

Thicker body MOSFET Thinner body MOSFET

Effect of Dit on
FC and BC Mobility
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Evaluation Procedure (II)
Effect of Dit on FC and BC Mobility

Front Dit as well as Back Dit effect on front-channel mobility 
can be evaluated.
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Front-channel µeff agrees well with back-channel µeff.

Experimental



µ C
o

ul
o

m
b 

[c
m

2
/V

se
c]

Ns [cm-2]

TSOI=14.6nm

front-channel
back-channel

0.005

0.015

Qinj[C/cm2]

1012

103

104

µCoulomb: front vs back channel
-Thicker (14.6nm) SOI nFETs-

BC mobility is 
greater than 
FC mobility in 
higher Ns

regions.

BC mobility is almost 
the same as FC 
mobility in lower Ns

regions.

Experimental

FC

FC

Effect of Qit on BC is less 
than that on FC.

µ C
o

ul
o

m
b 

[c
m

2
/V

se
c] TSOI=4.2nm

Ns [cm-2]

front-channel
back-channel

Qinj [C/cm2]

0.005

0.015

1012

103

104

µCoulomb: front vs back channel
Thinner (4.2nm) SOI nFETs
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Effect of Dit on BC mobility
Thicker SOI Thinner SOI
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Back Dit is less effective to µeff degradation than front Dit. 
However, at lower Ns, the effect of Back Dit is comparable to 
that of Front Dit.

The effect of Back Dit on µeff is the same as that of front Dit.

Outline

• Mobility Degradation in UTB MOSFETs 
(20nm> TSOI > 5nm): Phonon Scattering

• Mobility Degradation in UTB MOSFETs 
(TSOI < 5nm): δTSOI-induced Scattering

• Coulomb Scattering in UTB MOSFETs

• Mobility in Double-Gate MOSFETs



Coulomb Scattering
in Double-Gate MOSFETs
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µeff: Single-Gate vs Double-Gate

In 22nm SOI nFET, double-gate (DG) µeff agrees 
well with single-gate (SG) µeff.
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Coulomb scattering is less in DG MOSFETs than in SG 
MOSFETs.
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Greater screening effect due to twice Ns in DG 

Coulomb scattering reduction DG MOSFETs is mainly due to 
greater screening effects in DG MOSFETs.
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Transport in DG FETs as a 
function of TSOI
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µeff: Single-Gate vs Double-Gate
7.4-nm and 14.9-nm SOI nFETs

Double-gate µeff is greater than single-gate µeff in 7.4-nm and 
14.9-nm MOSFETs, which can be attributed to volume inversion.
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4.3-nm SOI nFETs

It is demonstrated for the first time that double-gate µeff is less 
than single-gate µeff in ultrathin body (UTB) MOSFETs.
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Why smaller µeff in DG FETs?

Subband structure is strongly modulated in DG FETs, due 
to the coupling of wavefunctions at both interfaces, 
resulting the higher occupancy in 4-fold valleys.
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Valley Occupancy: SG vs DG
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The occupancy of 4-fold 
valley is higher in DG 
than in SG.

In UTB MOSFETs, δTSOI-induced scattering is severe in DG 
than in SG, which results in smaller μeff in DG at higher Ns.

δTSOI-induced scattering 
is 670 times stronger in 
4-fold valley than in 2-fold 
valley.
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5-atomic-layer MOSFETs



0.7 nm

5-atomic-layer MOSFET

5-atomic-layer (0.7-nm) MOSFETs are successfully 
fabricated.

Cross-sectional TEM of MOSFET Channel
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C-V Characteristics of sub-1-nm 
nFETs

Cgc,max of sub-1-nm MOSFETs is almost the same as Cgc,max of 
15-nm MOSFETs, suggesting that there is no void in sub-1-nm 
film.

Experimental
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I-V Characteristics of sub-1-nm 
nFETs

The operation of sub-1-nm MOSFETs is confirmed, for the 
first time. However, larger drive current degradation in 
thinner sub-1-nm MOSFETs are observed.
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Mobility Characteristics of
sub-1-nm nFETs
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SOITμΔ ∝ Δ

In sub-1-nm FETs, the variation of mobility is very large.



Summary (I)

• Electron mobility enhancement
with a decrease in TSOI is 
demonstrated, for the first time

• SOI-thickness-flucutation-induced 
scattering is observed and 
evaluated, for the first time.

In order to enjoy the full advantages of UTB 
MOSFETs, atomically flat SOI film should 
be realized in deep-sub-20nm regime.

Summary (II)
µCoulomb in UTB MOSFETs

Transport in Double-Gate MOSFETs

Sub-1-nm MOSFETs

µCoulomb is less in thinner body MOSFETs

Back Dit is less effective to µeff degradation than 
front Dit. However, at lower Ns, the effect of Back 
Dit is comparable to that of Front Dit.

Effect of Back Dit is almost that same as that of 
Front Dit in UTB MOSFETs.

µCoulomb in DG is greater than µCoulomb in SG.

The lowering of µeff in DG, compared to SG, is 
observed, which is attributable to δTSOI-induced 
scattering. 

The operation of sub-1-nm MOSFETs is 
confirmed, for the first time. 
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