#### Outline

- Mobility Degradation in UTB MOSFETs (20nm> T<sub>SOI</sub> > 5nm): Phonon Scattering
- Mobility Degradation in UTB MOSFETs (T<sub>SOI</sub> < 5nm): δT<sub>SOI</sub>-induced Scattering
- Coulomb Scattering in UTB MOSFETs
- Mobility in Double-Gate MOSFETs

#### Mobility Degradation in UTB MOSFETs



J.-H. Choi, EDL **16** (1995) 527. Seoul National Univ.

Mobility degradation have been observed in SOI MOSFETs with  $T_{SOI}$  of less than ~20nm.

#### **Possible Reasons for Mobility Degradation**







H. Wang, EDL 14 (1994) p117.

The crystal quality of SOI is the same as that of bulk Si.





mobility degradation.













#### **Mobility Degradation:** T<sub>sol</sub> > 5nm



Mobility reduction in UTB MOSFETs with  $T_{SOI}$  of greater than 5nm is due to the increase of phonon scattering.

#### Outline

- Mobility Degradation in UTB MOSFETs (20nm> T<sub>SOI</sub> > 5nm): Phonon Scattering
- Mobility Degradation in UTB MOSFETs (T<sub>SOI</sub> < 5nm): δT<sub>SOI</sub>-induced Scattering
- Coulomb Scattering in UTB MOSFETs
- Mobility in Double-Gate MOSFETs



#### Relationship between V<sub>th</sub> and ∆V<sub>th</sub>



V<sub>th</sub> increase with a decrease in T<sub>SOI</sub> is clearly observed in <u>both n- and p-</u> <u>MOSFET cases</u>.

V<sub>th</sub> increase is due to quantummechanical effects.

Relationship between ∆V<sub>th</sub> and T<sub>SOL</sub>





Hole Mobility as a function of T<sub>sol</sub>



Hole mobility decreases monotonically as T<sub>SOI</sub> decreases, which is attributable to the increase of phonon scattering in inversion layer.



#### **Electron Mobility** as a function of T<sub>SOI</sub>



#### **Theoretical vs. Experimental**



#### Why mobility degradation even at 25K? Why small enhancement?

In order to clarify the reason, the effect of SOI thickness on C-V and I-V characteristics are thoroughly investigated by comparing experimental data with selfconsistent-calculation data of Schrödinger and Poisson equations.



#### V<sub>th</sub> versus T<sub>SOI</sub> (nMOS)





#### Effect of $\delta T_{SOI}$ on Mobility



$$h_n = \frac{h^2}{8m^* t_{\rm SOI}^2}$$

Potential fluctuation  $\Delta V$ 

$$\Delta V = \left[\frac{\partial E_n}{\partial T_{\rm SOI}}\right] \cdot \Delta = -\frac{h^2}{4m^* T_{\rm SOI}^{3}} \cdot \Delta$$

E

 $\delta T_{SOI}$ -limited mobility  $\mu_r$ 

$$\mu_r \propto \left[\frac{1}{\Delta V}\right]^2 \propto T_{\rm SOI}^{6}$$

 $\delta T_{sol}$ -limited mobility  $\mu_r$  shows  $T_{sol}^6$  dependence.



## Electron Mobility as a function of T<sub>SOI</sub> at T=25K $T_{SOI}^{0}$ $T_{SO$



#### Hole Mobility at T=25K



dT<sub>sol</sub>-scattering is also effective in pFETs.



#### Condition to Suppress δT<sub>sol</sub>-induced Scattering



#### Outline

- Mobility Degradation in UTB MOSFETs (20nm> T<sub>SOI</sub> > 5nm): Phonon Scattering
- Mobility Degradation in UTB MOSFETs (T<sub>sol</sub> < 5nm): δT<sub>sol</sub>-induced Scattering
- Coulomb Scattering in UTB MOSFETs
- Mobility in Double-Gate MOSFETs

Interface States generated by Fowler-Nordheim Stress

#### Interface States induced by Fowler-Nordheim (FN) Stress



 $D_{it}$  can be controlled well by  $Q_{ini}$  in Bulk FETs.

µ<sub>Coulomb</sub> by D<sub>it</sub> in Bulk FETs

 $\mu_{\rm Coulomb} \propto {\sf N_s}^{0.5}$ 

 $\mu_{\rm Coulomb} \propto \Delta D_{\rm it}^{-1}$ 

J. Koga et al., SSDM 1994, p895.





#### Coulomb Scattering as a Function of T<sub>SOI</sub>





#### Effect of *D<sub>it</sub>* on FC and BC Mobility



#### $\mu_{\rm eff}$ : Initial Characteristics



Front-channel  $\mu_{\text{eff}}$  agrees well with back-channel  $\mu_{\text{eff}}$ .



#### **µ<sub>Coulomb</sub>: front vs back channel** Thinner (4.2nm) SOI nFETs Experimental H<sub>Coulomb</sub> [cm<sup>2</sup>/Vsec] T<sub>SOI</sub>=4.2nm Q<sub>inj</sub> [C/cm<sup>2</sup>] BC 0.005 FC 0.015 front-channel back-channel 0 10<sup>12</sup> $N_{s} [cm^{-2}]$ In thinner SOI nFETs, BC mobility is almost the same as FC mobility in the entire N<sub>s</sub> regions.



#### Outline

- Mobility Degradation in UTB MOSFETs (20nm> T<sub>SOI</sub> > 5nm): Phonon Scattering
- Mobility Degradation in UTB MOSFETs (T<sub>sol</sub> < 5nm): δT<sub>sol</sub>-induced Scattering
- Coulomb Scattering in UTB MOSFETs
- Mobility in Double-Gate MOSFETs

#### Coulomb Scattering in Double-Gate MOSFETs

#### **µ**<sub>eff</sub>: Single-Gate vs Double-Gate



In 22nm SOI nFET, double-gate (DG)  $\mu_{eff}$  agrees well with single-gate (SG)  $\mu_{eff}$ .





greater screening effects in DG MOSFETs.

#### Transport in DG FETs as a function of T<sub>sol</sub>





Double-gate  $\mu_{eff}$  is greater than single-gate  $\mu_{eff}$  in 7.4-nm and 14.9-nm MOSFETs, which can be attributed to volume inversion.



#### Why smaller $\mu_{eff}$ in DG FETs?



resulting the higher occupancy in 4-fold valleys.

#### Valley Occupancy: SG vs DG



- The occupancy of 4-fold valley is higher in DG than in SG.
- δT<sub>SOI</sub>-induced scattering is 670 times stronger in 4-fold valley than in 2-fold valley.

$$\mu_{\delta ext{Tsoi}} \propto \left(rac{m_c}{m_z}
ight)^2$$

 $m_c$ : conductivity mass  $m_z$ : vertical mass

In UTB MOSFETs,  $\delta T_{SOI}$ -induced scattering is severe in DG than in SG, which results in smaller  $\mu_{eff}$  in DG at higher  $N_s$ .

# 5-atomic-layer MOSFETs

### 5-atomic-layer MOSFET Cross-sectional TEM of MOSFET Channel

Gate Oxide 10nm

Buried Oxide



5-atomic-layer (0.7-nm) MOSFETs are successfully fabricated.



 $C_{gc,max}$  of sub-1-nm MOSFE is is almost the same as  $C_{gc,max}$  of 15-nm MOSFETs, suggesting that there is no void in sub-1-nm film.



thinner sub-1-nm MOSFETs are observed.



#### Summary (I)

 Electron mobility enhancement with a decrease in T<sub>SOI</sub> is demonstrated, for the first time

 SOI-thickness-flucutation-induced scattering is observed and evaluated, for the first time.

In order to enjoy the full advantages of UTB MOSFETs, atomically flat SOI film should be realized in deep-sub-20nm regime.

#### **Summary (II)** µ<sub>Coulomb</sub> in UTB MOSFETs

- $\mu_{\text{Coulomb}}$  is less in thinner body MOSFETs
- Back  $D_{it}$  is less effective to  $\mu_{eff}$  degradation than front  $D_{it}$ . However, at lower  $N_s$ , the effect of Back  $D_{it}$  is comparable to that of Front  $D_{it}$ .
- Effect of Back D<sub>it</sub> is almost that same as that of Front Dit in UTB MOSFETs.
- $\mu_{\text{Coulomb}}$  in DG is greater than  $\mu_{\text{Coulomb}}$  in SG.
- **Transport in Double-Gate MOSFETs** 
  - The lowering of  $\mu_{eff}$  in DG, compared to SG, is observed, which is attributable to  $\delta T_{SOI}$ -induced scattering.

#### Sub-1-nm MOSFETs

• The operation of sub-1-nm MOSFETs is confirmed, for the first time.

#### Acknowledgement

This work is partly performed under the management of JEITA, which is supported by NEDO.

The authors would like to thank Drs. T. Ishihara, J. Yamauchi, H. Watanabe, N. Fukushima, A. Kurobe of TOSHIBA for stimulating discussions and continuous supports throughout this work.

One of the authors (KU) would like to thank Prof. Y. Nishi, T.-Y. Park, Dr. M. Deal, Dr. J. McVittie, T. Krishnamohan of Stanford Univ. for stimulating discussions.