Lecture11

Physics and Engineering of CMOS Devices

Ken Uchida Department of Physical Electronics Tokyo Institute of Technology

Physics and Engineering of CMOS Devices, Ken Uchida, Tokyo Tech, June 30, 2010

Resistance Change due to Strain

Piezoresistance Coefficient

$\left(\Delta \rho_{\rm l} / \rho_{\rm l} \right)$		(π_{11})	π_{12}	π_{12}	0	0	0)	(σ_1)
$\Delta ho_2/ ho_2$		π_{12}	π_{11}	$\pi_{\scriptscriptstyle 12}$	0	0	0	σ_2
$\Delta ho_3 / ho_3$	_	π_{12}	π_{12}	π_{11}	0	0	0	σ_{3}
$\Delta ho_4/ ho_4$	-	0	0	0	$\pi_{_{44}}$	0	0	$\sigma_{_4}$
$\Delta ho_5/ ho_5$		0	0	0	0	$\pi_{_{44}}$	0	$\sigma_{_{5}}$
$\left(\Delta ho_{6}/ ho_{6} ight)$		0	0	0	0	0	$\pi_{_{44}}$	$\left(\sigma_{_{6}} ight)$

Material	n-Si	p-Si	
ρ (Ωcm)	11.7	7.8	
$\pi_{11} (10^{-12} \text{ cm}^2/\text{dyne})$	-102.2	+6.6	
π_{12} (10 ⁻¹² cm ² /dyne)	53.4	-1.1	
π_{44} (10 ⁻¹² cm ² /dyne)	-13.6	+138.1	

Piezoresistance coefficient is material parameters for bulk Si. However, it can be used to estimate MOSFET resistance change.

Physics and Engineering of CMOS Devices, Ken Uchida, Tokyo Tech, June 30, 2010

例: Local Strain (Uniaxial Stress)

Mobility change by uniaxial stress

K. Uchida et al., IEDM, p229, 2004.

At low field, piezoresistance coefficeint is a good predictor of mobility enhancement. However, at high field discrepancy becomes large.

例: Global Strain (Biaxial Stress) - Electron -

Mobility change due to biaxial stress

Physics and Engineering of CMOS Devices, Ken Uchida, Tokyo Tech, June 30, 2010

1.5

1.0

0

10

20

30

Electron

40

Equivalent [Ge] in Fully Relaxed SiGe (%) K. Rim *et al.*, *IEDM*, p47, 2003.

Bulk _● N_D=4x10¹⁶cm⁻³

0 1

Effective Field [MV/cm]

K. Uchida et al., IEDM, p229, 2004.

50

Band structure change due to stress

Physics and Engineering of CMOS Devices, Ken Uchida, Tokyo Tech, June 30, 2010

Deformation Potential

Taylor expansion

$$\Delta E_{c} = \frac{\partial E}{\partial \varepsilon_{xx}} \varepsilon_{xx} + \frac{\partial E}{\partial \varepsilon_{yy}} \varepsilon_{yy} + \frac{\partial E}{\partial \varepsilon_{zz}} \varepsilon_{zz} + \frac{\partial E}{\partial \varepsilon_{xy}} \varepsilon_{xy} + \frac{\partial E}{\partial \varepsilon_{yz}} \varepsilon_{yz} + \frac{\partial E}{\partial \varepsilon_{zx}} \varepsilon_{zx} + \dots$$

ひずみテンソルの要素数が6つであるこ
とに対応して、エネルギー変化を表す係
数は6つ必要。シリコンの場合には結晶
の対称性のため、2つでOK.
$$E_{d} = \frac{1}{2} \left(\frac{\partial E}{\partial \varepsilon_{yy}'} + \frac{\partial E}{\partial \varepsilon_{zz}'} \right)$$

$$E_{u} = \frac{\partial E}{\partial \varepsilon_{xx}'} - E_{d}$$

Physics and Engineering of CMOS Devices, Ken Uchida, Tokyo Tech, June 30, 2010

10

Deformation Potential

Herring and Vogt have expressed the energy change due to a strain as a Hamiltonian of the form

$$H_{HV} = \Xi_d \left(\operatorname{Tr} \left\{ \mathbf{e} \right\} \right) + \Xi_u \left(\hat{\mathbf{k}} \cdot \mathbf{e} \cdot \hat{\mathbf{k}} \right)$$

 $\hat{\bf k}$ is a unit vector along the direction of one of the equivalent [100] conduction band minima in reciprocal space.

$$\Xi_d \approx 5 \,\mathrm{eV}$$
$$\Xi_u = 8.77 \,\mathrm{eV}$$

P. Yu and M. Cardona, Fundamentals of Semiconductors, 3rd ed., Springer 1998.

Physics and Engineering of CMOS Devices, Ken Uchida, Tokyo Tech, June 30, 2010

Energy Change for Each Valley

$$\begin{bmatrix} 100 \end{bmatrix}, \begin{bmatrix} 1'00 \end{bmatrix} \\ \Delta E^{100} = \Xi_d \left(\varepsilon_{xx}' + \varepsilon_{yy}' + \varepsilon_{zz}' \right) + \Xi_u \varepsilon_{xx}' \\ \begin{bmatrix} 010 \end{bmatrix}, \begin{bmatrix} 01'0 \end{bmatrix} \\ \Delta E^{010} = \Xi_d \left(\varepsilon_{xx}' + \varepsilon_{yy}' + \varepsilon_{zz}' \right) + \Xi_u \varepsilon_{yy}' \\ \begin{bmatrix} 001 \end{bmatrix}, \begin{bmatrix} 001' \end{bmatrix} \\ \Delta E^{001} = \Xi_d \left(\varepsilon_{xx}' + \varepsilon_{yy}' + \varepsilon_{zz}' \right) + \Xi_u \varepsilon_{zz}' \end{bmatrix}$$

Split of 6-fold Degenracy

x,y方向のBiaxial Stressであれば、 $\varepsilon_{xx} = \varepsilon_{yy} != \varepsilon_{zz}$ なので [100], [1'00], [010], [01'0]の4重縮退 [001], [001']の2重縮退

Local Strain (Uniaxial Stress)の場合

x方向のUniaxial Stressであれば、 $\varepsilon_{xx} \coloneqq \varepsilon_{yy} = \varepsilon_{zz}$ なので [100], [1'00]の2重縮退 [010], [01'0], [001], [001']の4重縮退

Physics and Engineering of CMOS Devices, Ken Uchida, Tokyo Tech, June 30, 2010

例: Global Strain (Biaxial Stress)

Si_{1-x}Ge_x Virtual SubstrateのGe content xとひず ε_{xx} の間には $\varepsilon_{xx} \sim 0.04x$ の関係がある。 従って、2重縮退と4重縮退のエネルギー差 ΔE は $\Delta E \sim 0.62x$ eVの関係がある。