Physics and Engineering of CMOS Devices

Ken Uchida Department of Physical Electronics Tokyo Institute of Technology

Physics and Engineering of CMOS Devices, Ken Uchida, Tokyo Tech, April 14, 2010

Depletion Approximation

Effect of substrate impurity

Brief Review of Semiconductor Physics Bulk Bandstructure

Physics and Engineering of CMOS Devices, Ken Uchida, Tokyo Tech, April 14, 2010

Brief Review of Semiconductor Physics

MOS Structure

Flat-band condition

 $q\phi_m = q\chi + \frac{E_g}{2} + q\phi_F$

The band in Si is bent even under zerobias condition, because of the work function difference.

Flat band voltage, V_{FB} is the gate-tosubstrate voltage necessary to realize flatband condition.

Physics and Engineering of CMOS Devices, Ken Uchida, Tokyo Tech, April 14, 2010

MOS Capacitor: Operation

Physics and Engineering of CMOS Devices, Ken Uchida, Tokyo Tech, April 14, 2010

MOS Capacitor: ϕ_s versus Q_{depl}

Depletion Approximation

- The carrier concentrations are assumed to be negligibly small compared to the net doping concentration.
- The charge density outside the depletion region is assumed to be zero.

MOS Capacitor: ϕ_s versus Q_{depl}

MOS Capacitor: ϕ_s versus Q_{depl} –cont'd

Electric Field at the surface, F_s . $F_s = \sqrt{\frac{2qN_A\phi_s}{\kappa_s\varepsilon_0}}$ Depletion region has the capacitance. $C_d = \frac{\partial |Q_{depl}|}{\partial \phi_s}$ $C_d = \sqrt{\frac{qN_A\kappa_s\varepsilon_0}{2\phi_s}}$ (5)

As N_A increases, depletion capacitance, C_d , increases. This is due to the reduction of depletion layer width.

Physics and Engineering of CMOS Devices, Ken Uchida, Tokyo Tech, April 14, 2010

Solving Poisson's Equation

Accumulation and Inversion Conditions

Physics and Engineering of CMOS Devices, Ken Uchida, Tokyo Tech, April 14, 2010

Brief Review of Semiconductor Physics Bulk Bandstructure

9

Suppose that substrate is p-type with acceptor concentration of N_A .

$$n_{p0}p_{p0} = n_i^2 \qquad N_A \approx p_{p0} = n_i \exp\left(\frac{q\phi_F}{k_B T}\right) \qquad (6)$$

$$n_{p0} \approx \frac{n_i^2}{N} \qquad \frac{n_i^2}{N} \approx n_{p0} = n_i \exp\left(-\frac{q\phi_F}{k_B T}\right) \qquad (7)$$

Brief Review of Semiconductor Physics Bandstructure at Semiconductor Surface

MOS Capacitor: ϕ_s versus Q_s

We will solve Poisson's equation.

$$\frac{d^2\phi}{dx^2} = -\frac{q}{\kappa_s \varepsilon_0} \left(N_D - N_A + p_p - n_p \right)$$
$$= -\frac{q}{\kappa_s \varepsilon_0} \left[-N_A - \frac{n_i^2}{N_A} \exp\left(\frac{q\phi}{k_B T}\right) \right] \qquad N_D \approx 0$$
$$p_p \approx 0$$

Multiplying both sides by $(d\phi/dx)dx$, we will obtain

$$\frac{1}{2}\left(\frac{d\phi}{dx}\right)^{2} = \frac{qN_{A}}{\kappa_{s}\varepsilon_{0}}\left[\phi + \frac{k_{B}T}{q}\left(\frac{n_{i}}{N_{A}}\right)^{2}\left[\exp\left(\frac{q\phi}{k_{B}T}\right) - 1\right]\right]$$

$$Q_{s} = -\kappa_{s}\varepsilon_{0}E_{s} = -\sqrt{2qN_{A}}\kappa_{s}\varepsilon_{0}}\left[\phi + \frac{k_{B}T}{q}\left(\frac{n_{i}}{N_{A}}\right)^{2}\left[\exp\left(\frac{q\phi}{k_{B}T}\right) - 1\right]\right]^{1/2} (10)$$
electrons + substrate impurity

Physics and Engineering of CMOS Devices, Ken Uchida, Tokyo Tech, April 14, 2010

MOS Capacitor: ϕ_s versus Q_s –cont'd

Of course, we can include p_p .

$$\frac{d^2\phi}{dx^2} = -\frac{q}{\kappa_s \varepsilon_0} \left[-N_A + N_A \exp\left(-\frac{q\phi}{k_B T}\right) - \frac{n_i^2}{N_A} \exp\left(\frac{q\phi}{k_B T}\right) \right]$$

$$\frac{1}{2} \left(\frac{d\phi}{dx}\right)^2 = \frac{qN_A}{\kappa_s \varepsilon_0} \left[\phi - \frac{k_B T}{q} \left[\exp\left(-\frac{q\phi}{k_B T}\right) - 1\right] + \frac{k_B T}{q} \left(\frac{n_i}{N_A}\right)^2 \left[\exp\left(\frac{q\phi}{k_B T}\right) - 1\right]\right]$$

$$Q_{s} = \mp \sqrt{2qN_{A}\kappa_{s}\varepsilon_{0}} \left[\phi - \frac{k_{B}T}{q} \left[\exp\left(-\frac{q\phi}{k_{B}T}\right) - 1 \right] + \frac{k_{B}T}{q} \left(\frac{n_{i}}{N_{A}}\right)^{2} \left[\exp\left(\frac{q\phi}{k_{B}T}\right) - 1 \right] \right]^{1/2}$$

electrons + holes + substrate impurity (11)

Physics and Engineering of CMOS Devices, Ken Uchida, Tokyo Tech, April 14, 2010

When $\phi_s = 2\phi_F$, the minority carrier density at the surface is comparable to the depletion charge density. Therefore, ϕ_s of $2\phi_F$ is defined as the threshold. When ϕ_s is in the range from ϕ_F to $2\phi_F$, the condition is called the weak inversion. When ϕ_s is greater than $2\phi_F$, the condition is called the strong inversion.

Physics and Engineering of CMOS Devices, Ken Uchida, Tokyo Tech, April 14, 2010

MOS Capacitor: ϕ_s versus Q_s

 $\phi_s = 2\phi_F$

At $\phi_s = 2\phi_F$, the minority carrier density at the surface is equal to the majority carrier density in the substrate; $n_s = N_A$

The threshold voltage, where the surface condition changes from the weak inversion to the strong inversion, is defined as,

Physics and Engineering of CMOS Devices, Ken Uchida, Tokyo Tech, April 14, 2010

Non-equilibrium condition

Quasi-Fermi Level in non-equilibrium Semiconductor

In equilibrium semiconductors, Fermi energy level (E_F) is defined either by the electron density and the hole density. In other words, both electron and hole densities can calculated using the Fermi energy level.

However, in non-equilibrium semiconductors, the single E_F is not enough to describe carrier numbers. For example, in light-illuminated semiconductors, many electrons and holes are populated. In those non-equilibrium semiconductors, E_F for electrons should be closer to the conduction band than to the valence band in order to generate appropriate number of electrons with $n_i \exp(E_i - E_F/k_B T)$, whereas E_F for holes should be closer to the valence band. Therefore, under non-equilibrium condition, Fermi energy level for electrons and that for holes should be defined separately, based on the number of electrons and holes respectively.

These Fermi energy levels are called **qusi-Fermi energy levels**. For electrons and holes, they are written as E_{Fn} and E_{Fn} , respectively.

Physics and Engineering of CMOS Devices, Ken Uchida, Tokyo Tech, April 14, 2010

A biased PN junction is another example of the non-equilibrium semiconductor.

In the depletion layer, we have E_{Fn} for electrons and E_{Fn} for holes.

Gated PN Junction

In gated PN junctions, we have E_{Fn} for electrons and E_{Fp} for holes when the junction is biased.

The point is that in the depletion region E_{Fn} should be used to calculate the electron densities.

Physics and Engineering of CMOS Devices, Ken Uchida, Tokyo Tech, April 14, 2010

Gated PN Junction -cont'd

$$V_{th} = V_{FB} + 2\phi_F + V_R + \frac{\sqrt{2qN_A\kappa_s\varepsilon_0\left(2\phi_F + V_R\right)}}{C_{ox}}$$
(13)

Physics and Engineering of CMOS Devices, Ken Uchida, Tokyo Tech, April 14, 2010

20

Summary

- Depletion approximation is introduced to derive ϕ_s versus Q_{depl} characteristics.
- In the MOS structure, Poisson's equation is solved. The equations representing accumulation, depletion, weak-inversion, and strong-inversion are obtained.
- Quasi Fermi level is introduced to discuss carriers in non-equilibrium semiconductors.
- Carriers in the gated PN junction is discussed.

Physics and Engineering of CMOS Devices, Ken Uchida, Tokyo Tech, April 14, 2010