Information Security and Cryptography for Communications and Network

Agenda

- Classical Cryptography
- Shannon's Theory
- The Data Encryption Standard (DES)
- The RSA System and Factoring
- Other Public-key Cryptography
- Signature Schemes

Agenda (2)

- Hash Functions
- Key Distribution and Key Agreement
- Identification Schemes
- Authentication Codes
- Secret Sharing Schemes
- Pseudo-random Number Generation
- Zero-knowledge Proofs
- Power Analysis

2010/07/23
Wireless Communication Engineering I

Cryptosystem

A cryptosystem is a five-tuple $(\boldsymbol{P}, \boldsymbol{C}, \boldsymbol{K}, \boldsymbol{E}, \boldsymbol{D})$, where the following conditions are satisfied:

1. \boldsymbol{P} is a finite set of possible plaintexts
2. \boldsymbol{C} is a finite set of possible cipher-texts
3. \boldsymbol{K}, the key-space, is a finite set of possible keys
4. For each $K \in K$, there is an encryption rule $e_{K} \in E$ and a corresponding decryption rule $d_{K} \in D$. Each $e_{K}: \boldsymbol{P} \rightarrow \boldsymbol{C}$ and $d_{K}: \boldsymbol{C} \rightarrow \boldsymbol{P}$ are functions such that $d_{K}\left(e_{K}(x)\right)=x$ for every plaintext $x \in P$.

The Communication Channel
2010/07/23
Wireless Communication Engineering 1

Let $P=C=Z_{26} . K$ consists of all possible permutations of the 26 symbols $0,1, \ldots, 25$. For each permutation $\pi \in K$, define

$$
e_{\pi}(x)=\pi(x),
$$

and define

$$
d_{\pi}(y)=\pi^{-1}(y)
$$

where π^{-1} is the inverse permutation to π.

Shannon's Theory

- Computational Security (RSA, etc.)
- Unconditional Security (based on Shannon Information Theory)

Suppose \mathbf{X} and \mathbf{Y} are random variables. We denote the probability that \mathbf{X} takes on the value x by $p(x)$, and the probability that \mathbf{Y} takes on the value y by $p(y)$. The joint probability $p(x, y)$ is the probability that \mathbf{X} takes on the value x and \mathbf{Y} takes on the value y.

The conditional probability $p(x \mid y)$ denotes the probability that \mathbf{X} takes on the value x given that \mathbf{Y} takes on the value y. The random variables \mathbf{X} and \mathbf{Y} are said to be independent if $p(x, y)=p(x) p(y)$ for all possible values x of \mathbf{X} and y of \mathbf{Y}.

Joint probability can be related to conditional probability by the formula

$$
p(x, y)=p(x \mid y) p(y)
$$

Interchanging x and y, we have that

$$
p(x, y)=p(y \mid x) p(x) .
$$

[^0]Wireless Communication Engineering

From these two expressions, we immediately obtain the following result, which is known as Bayes'
Theorem.

Bayes' Theorem
If $p(y)>0$, then

$$
p(x \mid y)=\frac{p(x) p(y \mid x)}{p(y)} .
$$

Spurious Keys and Unicity Distance

Let $(\boldsymbol{P}, \boldsymbol{C}, \boldsymbol{K}, \boldsymbol{E}, \boldsymbol{D})$ be a cryptosystem. Then

$$
H(\mathbf{K} \mid \mathbf{C})=H(\mathbf{K})+H(\mathbf{p})-H(\mathbf{C})
$$

First, observe that $H(\mathbf{K}, \mathbf{P}, \mathbf{C})=H(\mathbf{C} \mid \mathbf{K}, \mathbf{P})+H(\mathbf{K}, \mathbf{P})$.
Now, the key and plaintext determine the ciphertext uniquely, since $y=e_{K}(x)$.
This implies that $H(\mathbf{C} \mid \mathbf{K}, \mathbf{P})=0$. Hence,
$H(\mathbf{K}, \mathbf{P}, \mathbf{C})=H(\mathbf{K}, \mathbf{P})$. But \mathbf{K} and \mathbf{P} are independent, so $H(\mathbf{K}, \mathbf{P})=H(\mathbf{K})+H(\mathbf{P})$. Hence,

$$
H(\mathbf{K}, \mathbf{P}, \mathbf{C})=H(\mathbf{K}, \mathbf{P})=H(\mathbf{K})+H(\mathbf{P})
$$

2010/07/23
Wireless Communication Engineering I

Entropy of a natural language

Suppose L is a natural language.
The entropy of L is defined to be the quantity

$$
H_{L}=\lim _{n \rightarrow \infty} \frac{H\left(\mathbf{P}^{n}\right)}{n}
$$

and the redundancy of L is defined to be

$$
R_{L}=1-\frac{H_{L}}{\log _{2}|P|}
$$

Unicity distance

The unicity distance of a cryptosystem is defined to be the value of n, denoted by n_{0}, at which the expected number of spurious keys becomes zero; i.e., the average amount of ciphertext required for an opponent to be able to uniquely compute the key, given enough computing time.

$$
n_{0} \approx \frac{\log _{2}|K|}{R_{L} \log _{2}|P|}
$$

DES

1. Given a plaintext x, a bit-string x_{0} is constructed by permuting the bits of x according to a (fixed) initial permutation IP. We write $x_{0}=\operatorname{IP}(x)=L_{0} R_{0}$, where L_{0} comprises the first 32 bits of x_{0} and R_{0} the last 32 bits.
2. 16 iterations of a certain function are then computed. We compute $L_{i} R_{i}, 1 \leq i \leq 16$, according to the following rule:

$$
\begin{aligned}
L_{i} & =R_{i-1} \\
R_{i} & =L_{i-1} \oplus f\left(R_{i-1}, K_{i}\right)
\end{aligned}
$$

One round of DES encryption
2010/07/23
Wireless Communication Engineering 1

Public-key Cryptography

- RSA: Difficulty of factoring large integers
- Knapsack: Difficulty of the subset sum problem
- McEliece: Difficulty of decoding a linear code
- ElGamal: Difficulty of the discrete logarithm problem for finite fields
- Elliptic Curve: Work in the domain of elliptic curves rather than finite fields

$$
\begin{aligned}
& \text { 1. } z=1 \\
& \text { 2. for } i=\ell-1 \text { down to } 0 \text { do } \\
& \text { 3. } z=z^{2} \bmod n \\
& \text { 4. if } b_{i}=1 \text { then } \\
& \qquad z=z \times x \bmod n
\end{aligned}
$$

The square-and-multiply algorithm to compute $x^{b} \bmod n$

2010/07/23
Wireless Communication Engineering

$$
\begin{aligned}
& \text { Let } n=p q \text {, where } p \text { and } q \text { are primes. Let } \boldsymbol{P}=C=Z_{n} \text {, and define } \\
& \qquad K=\{(n, p, q, a, b): n=p q, p, q \text { prime, } a b \equiv 1(\bmod \phi(n))\} \\
& \text { For } K=(n, p, q, a, b) \text {, define } \\
& \qquad e_{K}(x)=x^{b} \bmod n \\
& \text { and } \\
& \qquad d_{K}(y)=y^{a} \bmod n
\end{aligned}
$$

$\left(x, y \in \mathrm{Z}_{n}\right)$ The values n and b are public, and the values p, q, a are secret.

RSA Cryptosystem

2010/07/23
Wireless Communication Engineering I

ElGamal Cryptosystem and Discrete Logs

Problem Instance

$I=(p, \alpha, \beta)$, where p is prime, $\alpha \in \mathrm{Z}_{p}$ is a primitive element, and $\beta \in \mathrm{Z}_{p}{ }^{*}$.

Objective
Find the unique integer $a, 0 \leq a \leq p-2$ such that

$$
\alpha^{a} \equiv \beta(\bmod p)
$$

We will denote this integer a by $\log _{\alpha} \beta$.
2010/07/23
Wireless Communication Engineering

Let p be a prime such that the discrete \log problem in Z_{p} is intractable, and let $\alpha \in \mathrm{Z}_{p}{ }^{*}$ be a primitive element.
Let $P=\mathrm{Z}_{p}{ }^{*}, C=\mathrm{Z}_{p}{ }^{*} \times \mathrm{Z}_{p}{ }^{*}$, and define

$$
K=\left\{(p, \alpha, a, \beta): \beta \equiv \alpha^{a}(\bmod p)\right\}
$$

The values p, α and β are public, and a is secret.
For $K=(p, \alpha, a, \beta)$, and for a (secret) random number $k \in \mathrm{Z}_{p-1}$, define

$$
e_{K}(x, k)=\left(y_{1}, y_{2}\right)
$$

2010/07/23
Wireless Communication Engineering

Let G be a generating matrix for an $[n, k, d]$ Goppa code \mathbf{C}, where $n=2^{m}, d=2 t+1$ and $k=n-m t$. Let S be a matrix that is invertible over Z_{2}, let P be $n \times n$ an permutation matrix, and let $G^{\prime}=S G P$. Let $\boldsymbol{P}=\left(\mathrm{Z}_{2}\right)^{k}, \boldsymbol{C}=\left(\mathrm{Z}_{2}\right)^{n}$, and let

$$
K=\left\{\left(G, S, P, G^{\prime}\right)\right\}
$$

where G, S, P, and G^{\prime} are constructed as described above.
G^{\prime} is public, and G, S, and P are secret.
For $K=\left(G, S, P, G^{\prime}\right)$, define $e_{K}(\mathbf{x}, \mathbf{e})=\mathbf{x} G^{\prime}+\mathbf{e}$

McEliece Cryptosystem

2010/07/23
Wireless Communication Engineering 1
where

$$
y_{1}=\alpha^{k} \bmod p
$$

and

$$
y_{2}=x \beta^{k} \bmod p
$$

For $y_{1}, y_{2} \in Z_{p}{ }^{*}$, define

$$
d_{K}\left(y_{1}, y_{2}\right)=y_{2}\left(y_{1}{ }^{a}\right)^{-1} \bmod p
$$

2010/07/23 Wireless Communication Engineering I

where $\mathbf{e} \in\left(Z_{2}\right)^{n}$ is a random vector of weight t.

Bob decrypts a ciphertext $\mathbf{y} \in\left(\mathrm{Z}_{2}\right)^{n}$ by means of the following operations:

```
1. Compute \(\mathbf{y}_{1}=\mathbf{y} P^{-1}\).
2. Decode \(\mathbf{y}_{1}\), obtaining \(\mathbf{y}_{1}=\mathbf{x}_{1}+\mathbf{e}_{1}\), where \(\mathbf{x}_{1} \in \mathbf{C}\).
3. Compute \(\mathbf{x}_{0} \in\left(\mathbf{Z}_{2}\right)^{k}\) such that \(\mathbf{x}_{0} G=\mathbf{x}_{1}\).
4. Compute \(\mathbf{x}=\mathbf{x}_{0} S^{-1}\).
```


Signature Schemes

A signature scheme is a five-tuple $(\boldsymbol{P}, \boldsymbol{A}, \boldsymbol{K}, \boldsymbol{S}, \boldsymbol{V})$, where the following conditions are satisfied:

1. \boldsymbol{P} is a finite set of possible messages
2. \boldsymbol{A} is a finite set of possible signatures
3. \boldsymbol{K}, the key-space, is a finite set of possible keys
4. For each $K \in K$, there is a signing algorithm $\operatorname{sig}_{K} \in S$ and a corresponding verification algorithm ver $_{K} \in V$. Each $\operatorname{sig}_{K}: \boldsymbol{P} \rightarrow \boldsymbol{A}$ and ver $_{K}: P \times A \xrightarrow{\text { \{ true, false }\} \text { are functions such that }}$ the following equation is satisfied for every message $x \in P$ and for every signature $y \in A$

$$
\operatorname{ver}(x, y)=\left\{\begin{array}{lll}
\text { true } & \text { if } & y=\operatorname{sig}(x) \\
\text { false } & \text { if } & y \neq \operatorname{sig}(x)
\end{array}\right.
$$

2010/07/23
Wireless Communication Engineering I

$$
\begin{aligned}
& \text { Let } n=p q \text {, where } p \text { and } q \text { are primes. Let } \mathcal{P}=\mathcal{A}=\mathbb{Z}_{n} \text {, and define } \\
& \qquad \mathcal{K}=\{(n, p, q, a, b): n=p q, p, q \text { prime, } a b \equiv 1(\bmod \phi(n))\} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Let } p \text { be a prime such that the discrete log problem in } \mathbb{Z}_{p} \text { is intractable, } \\
& \text { and let } \alpha \in \mathbb{Z}_{p}^{*} \text { be a primitive element. Let } \mathcal{P}=\mathbb{Z}_{p}^{*}, \mathcal{A}=\mathbb{Z}_{p}^{*} \times \mathbb{Z}_{p-1} \text {, } \\
& \text { and define } \quad \mathcal{K}=\left\{(p, \alpha, a, \beta): \beta \equiv \alpha^{a}(\bmod p)\right\} . \\
& \text { The values } p, \alpha \text { and } \beta \text { are public, and } a \text { is secret. } \\
& \text { For } K=(p, \alpha, a, \beta) \text {, and for a (secret) random number } k \in \mathbb{Z}_{p-1}{ }^{*} \text {, }
\end{aligned}
$$

$$
\text { The values } n \text { and } b \text { are public, and the values } p, q, a \text { are secret. }
$$

$$
\text { For } K=(n, p, q, a, b) \text {, define }
$$

$$
\operatorname{sig}_{K}(x)=x^{a} \bmod n
$$

and

$$
\operatorname{ver}_{K}(x, y)=\operatorname{true} \Leftrightarrow x \equiv y^{b}(\bmod n)
$$

$$
\left(x, y \in \mathbb{Z}_{n}\right)
$$

```
Let p}\mathrm{ be a 512-bit prime such that the discrete log problem in Z}\mp@subsup{\mathbb{Z}}{p}{}\mathrm{ is in-
tractible, and let q be a 160-bit prime that divides p-1. Let }\alpha\in\mp@subsup{\mathbb{Z}}{p}{}\mp@subsup{}{}{*
\[
\mathcal{K}=\left\{(p, q, \alpha, a, \beta): \beta \equiv \alpha^{\alpha}(\bmod p)\right\} .
\]
The values \(p, q, \alpha\) and \(\beta\) are public, and \(a\) is secret
```

```
For K=(p,q,\alpha,a,\beta), and for a (secret) random number k,1\leqk\leq
```

For K=(p,q,\alpha,a,\beta), and for a (secret) random number k,1\leqk\leq
q-1, define }\quad\mp@subsup{\operatorname{sig}}{K}{}(x,k)=(\gamma,\delta)\mathrm{ ,
where
\gamma=(\alpha\mp@subsup{\alpha}{}{k}\operatorname{mod}p)\operatorname{mod}q
and

$$
\delta=(x+a \gamma) k^{-1} \bmod q .
$$

```

For \(x \in \mathbb{Z}_{q}{ }^{*}\) and \(\gamma, \delta \in \mathbb{Z}_{q}\), verification is done by performing the following computations:
\[
\begin{aligned}
& e_{1}=x \delta^{-1} \bmod q \\
& e_{2}=\gamma \delta^{-1} \bmod q
\end{aligned}
\]
\(\operatorname{ver}_{K}(x, \gamma, \delta)=\) true \(\Leftrightarrow\left(\alpha^{e_{1}} \beta^{e_{2}} \bmod p\right) \bmod q=\gamma\).
DSS (Digital Signature Standard)
2010/07/23
Wireless Communication Engineering I
```

Let p=2q+1 be a prime such that q}\mathrm{ is prime and the discrete log
problem in }\mp@subsup{\mathbb{Z}}{p}{}\mathrm{ is intractible. Let }\alpha\in\mp@subsup{\mathbb{Z}}{p}{*}\mathrm{ be an element of order q. Let
1\leqa\leqq-1 is intractible. Let \alpha\in{䩗", be an element of order q. Le
lu
p). Let }\mathcal{P}=\mathcal{A}=G\mathrm{ , and define

$$
\mathcal{K}=\left\{(p, \alpha, a, \beta): \beta \equiv \alpha^{\alpha}(\bmod p)\right\}
$$

$$
\text { The values } p, \alpha \text { and } \beta \text { are public, and } \alpha \text { is secret. }
$$

$$
\text { For } K=(p, \alpha, a, \beta) \text { and } x \in G \text {, define }
$$

$$
y=\operatorname{sig}_{K}(x)=x^{a} \bmod p
$$

For $x, y \in G$, verification is done by executing the following protocol:

1. Alice chooses e_{1}, e_{2} at random, $e_{1}, e_{2} \in \mathbb{Z}_{q}{ }^{-}$
2. Alice computes $c=y^{e_{1}} \beta^{e_{2}} \bmod p$ and sends it to Bob,
3. Bob computes $d=c^{a^{-1} \bmod q} \bmod p$ and sends it to Alice
4. Alice accepts y as a valid signature if and only if
```

Undeniable Signature Scheme
2010/07/23
Wireless Communication Engineering

Suppose \(p\) is a large prime and \(q=(p-1) / 2\) is also prime. Let \(\alpha\) and \(\beta\) be two primitive elements of \(\mathbb{Z}_{p}\). The value \(\log _{\alpha} \beta\) is not public, and we assume that it is computationally infeasible to compute its value. The hash function
\[
h:\{0, \ldots, q-1\} \times\{0, \ldots, q-1\} \rightarrow \mathbb{Z}_{p} \backslash\{0\}
\]
is defined as follows:
\[
h\left(x_{1}, x_{2}\right)=\alpha^{x_{1}} \beta^{x_{2}} \bmod p .
\]

\section*{Chaum-van Heijst-Pfitzmann Hash Function}
```

A}=67452301 (hex
B= efcdabs9 (hex)
C=98badcfe (hex)
D=10325476 (hex)
for i}=0\mathrm{ to N/16-1 do
for }j=0\mathrm{ to 15 do
X[j] =M[16i}+j
AA=A
CC=C
DD=D
Round1
Round2
Round3
A=A+AA
C=C+CC
D = D + D D

```
\[
\begin{array}{ll}
\text { 1. } & A=(A+f(B, C, D)+X[0]) \lll 3 \\
2 . & D=(D+f(A, B, C)+X[1]) \lll 7 \\
3 . & C=(C+f(D, A, B)+X[2]) \lll 11 \\
4 . & B=(B+f(C, D, A)+X[3]) \lll 19 \\
5 . & A=(A+f(B, C, D)+X[4]) \lll 3 \\
6 . & D=(D+f(A, B, C)+X[5]) \lll 7 \\
7 . & C=(C+f(D, A, B)+X[6]) \lll 11 \\
8 . & B=(B+f(C, D, A)+X[7]) \lll 19 \\
9 . & A=(A+f(B, C, D)+X[8]) \lll 3 \\
10 . & D=(D+f(A, B, C)+X[9]) \lll 7 \\
11 . & C=(C+f(D, A, B)+X[10]) \lll 11 \\
12 . & B=(B+f(C, D, A)+X[11]) \lll 19 \\
13 . & A=(A+f(B, C, D)+X[12]) \lll 3 \\
14 . & D=(D+f(A, B, C)+X[13]) \lll 7 \\
15 . & C=(C+f(D, A, B)+X[14]) \lll 11
\end{array}
\]
16. \(B=(B+f(C, D, A)+X[15]) \ll 19\)

\section*{Round 1}

2010/07/23
Wireless Communication Engineering
\[
\begin{array}{ll}
\text { 1. } & A=(A+g(B, C, D)+X[0]+5 A 827999) \ll 3 \\
2 . & D=(D+g(A, B, C)+X[4]+5 A 827999) \lll \\
3 . & C=(C+g(D, A, B)+X[8]+5 A 827999) \lll 9 \\
4 . & B=(B+g(C, D, A)+X[12]+5 A 827999) \lll 13 \\
5 . & A=(A+g(B, C, D)+X[1]+5 A 827999) \ll 3 \\
6 . & D=(D+g(A, B, C)+X[5]+5 A 827999) \lll \\
7 . & C=(C+g(D, A, B)+X[9]+5 A 827999) \lll 9 \\
8 . & B=(B+g(C, D, A)+X[13]+5 A 827999) \lll 13 \\
9 . & A=(A+g(B, C, D)+X[2]+5 A 827999) \lll 3 \\
10 . & D=(D+g(A, B, C)+X[6]+5 A 827999) \lll \\
11 . & C=(C+g(D, A, B)+X[10]+5 A 827999) \lll 9 \\
12 . & B=(B+g(C, D, A)+X[14]+5 A 827999) \lll 13 \\
13 . & A=(A+g(B, C, D)+X[3]+5 A 827999) \lll 3 \\
14 . & D=(D+g(A, B, C)+X[7]+5 A 827999) \lll \\
15 . & C=(C+g(D, A, B)+X[11]+5 A 827999) \lll 9 \\
16 . & B=(B+g(C, D, A)+X[15]+5 A 827999) \lll 13
\end{array}
\]
1. \(A=(A+h(B, C, D)+X[0]+6 E D 9 E B A 1) \lll 3\) 2. \(D=(D+h(A, B, C)+X[8]+6 E D 9 E B A 1) \lll 9\) 3. \(C=(C+h(D, A, B)+X[4]+6 E D 9 E B A 1) \lll 11\) \(A=(A+h(B, C, D)+X[2]+6 E D 9 E B A 1) \lll 3\) \(D=(D+h(A, B, C)+X[10]+6 E D 9 E B A 1) \lll\) . \(C=(C+h(D, A, B)+X[6]+6 E D 9 E B A 1) \lll 11\)

Round 2
Wireless Communication Engineering

\section*{Time-stamping}
1. Bob computes \(z=h(x)\)
2. Bob computes \(z^{\prime}=h(z \| p u b)\)
3. Bob computes \(y=\operatorname{sig}_{K}\left(z^{\prime}\right)\)
4. Bob publishes \((z, p u b, y)\) in the next day's newspaper.

\section*{Identification Schemes}
1. Bob chooses a challenge, \(x\), which is a random 64 -bit string. Bob sends \(x\) to Alice.
2. Alice computes
\[
y=e_{K}(x)
\]
and sends it to Bob.
3. Bob computes
\[
y^{\prime}=e_{K}(x)
\]
and verifies that \(y^{\prime}=y\).
Challenge-and-response protocol
2010/07/23
Wireless Communication Engineering I

\section*{Key Pre-distribution}
1. A prime \(p\) and a primitive element \(\alpha \in \mathbb{Z}_{p}{ }^{*}\) are made public.
2. V computes
\[
K_{\mathrm{U}, \mathrm{~V}}=\alpha^{a_{\mathrm{U}} a_{\mathrm{V}}} \bmod p={b_{\mathrm{U}}}^{a_{\mathrm{V}}} \bmod p
\]
using the public value \(b_{\mathrm{U}}\) from U 's certificate, together with his own secret value \(a_{\mathrm{V}}\).
3. U computes
\[
K_{\mathrm{U}, \mathrm{~V}}=\alpha^{a_{\mathrm{U}} a_{\mathrm{V}}} \bmod p=b_{\mathrm{V}}{ }^{a_{\mathrm{U}}} \bmod p
\]
using the public value \(b_{\mathrm{V}}\) from V's certificate, together with her own secret value \(a_{U}\).

2010/07/23
Wireless Communication Engineering

\section*{Authentication Codes}

An authentication code is a four-tuple ( \(\boldsymbol{S}, \boldsymbol{A}, \boldsymbol{K}, \boldsymbol{E}\) ), where the following conditions are satisfied:
1. \(\boldsymbol{S}\) is a finite set of possible source states
2. \(\boldsymbol{A}\) is a finite set of possible authentication tags
3. \(\boldsymbol{K}\), the keyspace, is a finite set of possible keys
4. For each \(K \in K\), there is an authentication rule \(e_{K}: S \rightarrow \boldsymbol{A}\).

\section*{Secret Sharing Schemes}

Let \(t, w\) be positive integers, \(t \leq w\).
\(\mathrm{A}(t, w)\)-threshold scheme is a method of sharing a key \(K\) among a set of \(w\) participants (denoted by \(\boldsymbol{P}\) ), in such a way that any \(t\) participants can compute the value of \(K\), but no group of \(t-1\) participants can do so.

\section*{Pseudo-random Number Generation}

Let \(k, \ell\) be positive integers such that \(\ell \geq k+1\) (where \(\ell\) is a specified polynomial function of \(k\) ).
A \((k, \ell)\)-pseudo - random bit generator (more briefly, a \((k, \ell)\)-PRBG \()\) is a function \(f:\left(\mathrm{Z}_{2}\right)^{k} \rightarrow\left(\mathrm{Z}_{2}\right)^{\ell}\) that can be computed in polynomial time (as a function of \(k\) ). The input \(s_{0} \in\left(\mathrm{Z}_{2}\right)^{k}\) is called the seed, and the output \(f\left(s_{0}\right) \in\left(Z_{2}\right)^{\ell}\) is called a pseudo-random bit-string.
\[
\begin{aligned}
& \text { for } 1 \leq i \leq \ell \text { and then define } \\
& \qquad f\left(s_{0}\right)=\left(z_{1}, z_{2}, \ldots, z_{\ell}\right), \\
& \text { where } \\
& \qquad z_{i}=s_{i} \bmod 2 . \\
& 1 \leq i \leq \ell \text {. Then } f \text { is a }(k, \ell) \text {-Linear Congruential Generator. } \\
& \text { Linear Congruential Generator } \\
& 201007 / 23 \quad \text { Wireless Communication Enginering } 1
\end{aligned}
\]

\section*{Zero-knowledge Proofs}

\section*{- Completeness}

If \(x\) is a yes-instance of the decision problem, then Vic will always accept Peggy's proof.
- Soundness

If \(x\) is a no-instance of, then the probability that Vic accepts the proof is very small.
4. Peggy computes
\[
z=u^{i} v \bmod n
\]
where \(u\) is a square root of \(x\), and sends \(z\) to Vic.
5. Vic checks to see if
\[
z^{2} \equiv x^{i} y(\bmod n)
\]
6. Vic accepts Peggy's proof if the computation of step 5 is verified in each of the \(\log _{2} n\) rounds.

A perfect zero-knowledge interactive proof system for Quadratic Residues

2010/07/23
Wireless Communication Engineering I


\section*{Attacks against smart card}


An example of the power consumption of smart card


Power consumption of 16 rounds DES on a smartcard
"Paul Kocher, Joshua Jaffe, and Benjamin Jun "Differential Power Analysis", Advances in CryptographyCRYPTO'99", pp. 388-397.
"Power analysis" is a powerful attack against smart card

2010/07/23
Wireless Communication Engineering 1

\section*{Power analysis}
- SPA(Simple Power Analysis): Observe the internal operation processing
- Reveal the key from single power trace
- Correlation between the key and operationis isused intipher text \(c\)

- DPA(Differential Power Analysis): Observe the internal data


\section*{Data hamming weight and power consumption}

\section*{Protection against power analysis}
- Protect SPA: Perform the constant operation pattern


Processing time increased \(+33 \%\) for dummy operation
Protect DPA: Randomize the internal data to hide the correlation
Without protection With protection: randomize the data


Problem: processing time overhead is increased with protection

\section*{Set up}

Measuring Power Consumption


Hamming Weight or Hamming Distance Leakage


Power consumption grows in proportion with the hamming weight of the data (for certain IC chips)


\section*{Protection against DPA}
- Reduce the signal
- Represent the data without hamming weight difference
e.g. \(0 \rightarrow 01,1 \rightarrow 1\)

Circuit size is increased
- Increase the noise
- Add the noise generator circuit
- Protection is deactivated by increasing the number of the power consumption data
- Duplicate the data
- Duplicate the intermediate data M into two random data \(\mathrm{M}_{1}\) and \(\mathrm{M}_{2}\)
satisfying \(\mathrm{M}=\mathrm{M}_{1} \oplus \mathrm{M}_{2}\)
- Processing time/circuit size is increased
- Update date the cryptographic key with certain period
- If the key before is updated enough number of the power consumption data is collected, the attack is avoided
2010/07/23
Wireless Communication Engineering 1

\section*{Power analysis}

- Reveal the cryptographic key stored in the smart card by observing the power consumption(Kocher, 1998)
- Power consumption shows internal operation and data value in the smart card, which are related with the key
- Simple and powerful attack
- Just add a resistor to Vcc of IC chip
- Instrument is low-cost (Digital oscilloscope)

\footnotetext{
This attack is possible even when the implemented cryptographic algorithm is mathematically secure
}
\(\rightarrow\) Extra security protection Wirelcss Commumication Enquneering I```


[^0]:    2010007/2

