第12回

WDM伝送技術(2)・ 光通信の最新動向(1)

2010年1月18日(月)

CWDM

各種WDMとデバイス

杉江, 2003年信学ソ大, SC-6-1 (2003).

	波長間隔等	LD	フィルタ
DWDM (Ex. G.694.1)	~ 1000GHz	波長制御 + 外部変調	FG,、AWG、誘電体 波長制御
SDWDM	~ 25GHz	波長制御(波長 ロック)+ 外部変調	FG、AWG、誘電体 波長制御
CWDM	1000GH z ~50 n m	FP-LD、DFB-LD 温度制御	誘電体、ファイバ型、 PLC
Wide passband -WDM (Ex. G.694.2)	波長間隔:20 nm 通過帯域:約13 nm	DFB-LD (温度制御なし)	誘電体、AWG/PLC、 ファイバ型
Wide-WDM (1.3/1.5μm)	50nm ~	FP-LD	誘電体、ファイバ型

CWDMの仕様

- ・ITU-T G.694.2での標準化
- ・光アンプの使用は想定せず
- ・Uncooledの安価なDFB-LDを使用
- ・現在の製造技術で量産可能なWDMフィルタを使用

WDM用光ファイバ

2009年度 光通信システム FWM抑制のための光ファイバへの要求条件

FWM発生効率

大A_{eff}光ファイバ

タイプ	屈折率分布	電界分布	$A_{eff}(\mu m^2)$ @ 1550nm	MFD (µm) @ 1550nm	波長分散 (ps/nm/km)	分散スロープ (ps/nm/km) @ 1550nm
標準SMF			80~85	10	+17	0.06
階段型 DSF			40~50	7.5~8.5 <mark>ントオフ波長</mark> の	-5~+5 <mark>の長波長シフ</mark>	$0.07 \sim 0.1$
セグメンテッド コア型			eff 人 /曲	げ損失増大 8~9	-5~+5	0.10∼0.12
中心ディップ 型(単リング)			80 ~ 120	8~10	-5~+5	0.08~0.09
中心ディップ 型(2重リング)		- <mark>電界分布か</mark> 	<mark>、中心にディ</mark> 、 80~150	<mark>ソプを持つ </mark> 〉 8~10	□/	度) 0.08~0.09

和田 朗, "光ファイバー研究開発の最新動向", O plus E, pp.68-73 (1999).

NZ-DSFファイバの仕様比較

各社ホームページの製品情報より

メーカ	製品名	伝送損失 (dB/km)	分散 (ps/nm/km)	分散スロープ (ps/nm²/km)	PMD (ps/ √km)
住友電工	PureGuide®	≤ 0.22	5.0 - 10.0(C)	≤0.063 ≤@ 1550nm	≤ 0.2
Corning	Leaf TM	≤ 0.25	2.0 - 6.0(C) 4.5 - 11.2(L)	Not shown	≤ 0.04
Lucent	TrueWave TM	≤ 0.25	2.6 - 6.0(C) 4.0 - 8.9(L)	≤0.05 ≤@ 1550nm	≤ 0.1
Alcatel	TeraLight TM	≤ 0.25	5.5 - 10.0(C) 7.5 - 13.8(L)	0.058 @ 1550nm	≤ 0.08

分散補償ファイバ

屈折率分布	MFD (μm) @ 1550nm	波長分散 (ps/nm/km)	分散スロープ (ps/nm/km) @ 1550nm	性能指数 (ps/nm/dB) @ 1550nm
	5.0	-70 ~ -90	+0.08	200 ~ 250
	5.0	-70 ~ -90	+0.08	200~250
	4.5		-0.2~-0.5	200~300
R	DF 5.8	-15.6	-0.046	62
	5.0	-100~-300	-0.15	300~400

和田 朗, "光ファイバー研究開発の最新動向", O plus E, pp.68-73 (1999).

@ 1550nm

ファイバ	損失 (dB/km)	n_2 (×10 ⁻²⁰ m ² /W)	A _{eff} (μm ²) @ 1550nm	波長分散 (ps/nm/km)	分散スロープ (ps/nm/km)
+D	0.171	2.8	112	+20.6	+0.060
-D	0.296	4.0	19	-55.9	-0.142
+D/-D	0.212		79	-1.5	+0.007

アレイ導波路格子 (AWG)

AWG (Arrayed Waveguide Grating)

2009年度 光通信システム 400ch 25GHz spacing AWG(石英系)

Y. Hida, Y. Hibino, T. Kitoh, Y. Inoue, M. Itoh, T. Shibata, A. Sugita and A. Himeno (NTT), Electron. Lett., vol. 37, pp.820-821 (2001).

小型·大規模AWG

6インチウエハ上に作製した 25GHz, 400チャネルAWG

超高△PLC(1.5%,曲げ半径2mm)の採用

波長範囲:1530-1610nm 損失:3.8dB(中央ポート)、6.4dB(端のポート) 隣接クロストーク:-20dB 偏波依存波長シフト:0.03nm以下

Y. Hida, Y. Hibino, T. Kitoh, Y. Inoue, M. Itoh, T. Shibata, A. Sugita and A. Himeno (NTT), Electron. Lett., vol. 37, pp.820-821 (2001).

光分散補償器

2009年度 光通信システム ラティス型フィルタを用いた分散補償器

K. Takiguchi, K. Okamoto, T. Goh, T. Saida and M. Itoh, in Proc. ECOC2000, We. P. 19 (2000).

8チャネル40Gbps WDM用PLC型分散スロープ補償器

分散補償特性

K. Takiguchi, K. Okamoto, T. Goh, T. Saida and M. Itoh, in Proc. ECOC2000, We. P. 19 (2000).

2009年度 光通信システム Virtually-Imaged Phased Array (VIPA)

H. Ooi, K. Nakamura, Y, Akiyama, T, Takahara, T. Terahara, Y. Kawahata, H. Isono, and G. Ishikawa, J. Lightwave Technol., vol.20, No.12, pp.2196-2203 (2002).

VIPAの分散特性

H. Ooi, K. Nakamura, Y, Akiyama, T, Takahara, T. Terahara, Y. Kawahata, H. Isono, and G. Ishikawa, J. Lightwave Technol., vol.20, No.12, pp.2196-2203 (2002).

^{2009年度} _{光通信システム}分散マネジメント伝送路とVIPAを用いた40Gbps伝送結果

H. Ooi, K. Nakamura, Y, Akiyama, T, Takahara, T. Terahara, Y. Kawahata, H. Isono, and G. Ishikawa, J. Lightwave Technol., vol.20, No.12, pp.2196-2203 (2002).

偏光度モニタを用いたPMD補償器

磯村, ラスムッセン, 大井, 秋山, 石川, 2003年信学ソ大, B-10-124 (2003).

2009年度

光通信システム

PMD-波長分散同時自動補償実験

大井, ラスムッセン, 高原, 中村, 磯村, 福士, 石川, 2003年信学ソ大, B-10-121 (2003).

電気分散補償技術

2009年度 光通信システム EDC (Electronic Dispersion Compensation)技術(1)

FIR (Finite Inpulse Response)フィルタで構成することが多い

プリコンペンセーションの構成(1)

2009年度

光通信システム

2009年度 光通信システム EDC (Electronic Dispersion Compensation)技術(3)

J. McNicol, M. O'Sullivan, K. Roberts, A. Comeau, D. McGhan, and L. Strawczynski, OFC2005, OThJ3.

第9章

光通信の最新動向

ビデオトラフィックの急増

水落,2009年第1回PN新世代懇談会.

● 長距離基幹系 ビットレート:10Gbps → 40Gbps 変調方式: { OOK → MPSK (DPSK, DQPSK) 多値度を上げる方向 シングルキャリア → マルチキャリア (OFDM)

● メトロ系

リングNWの接続:カラーレスの処理が必要(ROADM、WSS)

● イーサネット系

ビットレート:10Gbps → 40/100Gbps (IEEE802.3ba国際標準検討中)

テラビット(Tbps)伝送実験の報告例

速度:100G超へ 距離:7,000km超@100Gへ 検波方式:デジタル技術によるコヒーレントの復興 変調方式:多値 and/or 多キャリア方式へ

年代

『Interface』(2001年9月号を基に追記)

2009年度

光通信システム

最近6年間の長距離伝送方式のトレンド

2004~2009年 OFC・ECOCでの変調方式のトレンド(主に>40Gbpsの長距離伝送・ 変調方式・PDセッションを中心に調査・デジタルコヒーレントかどうかは区別せず)

学会名	оок	Duo- binary	(D)PSK	(D)QPSK		多値	OFDM	
OFC2004	4	0	9	5	2	16QAM ASK×QPSK	0	
ECOC2004	7	3	16	3	1	16-Ary	0	
OFC2005	6	0	14	7	1	8DPSK	0	
ECOC2005	10	1	8	6	0		0	
OFC2006	3	0	QPSK>B 6	PSKとなった 8	1	9QAM 8PSK	0	
ECOC2006	1	2	4	14	2	128QAM 16APSK	0	
OFC2007	6	0	6	8	5	64QAM 多值 16AQSK	「「「「「」」」 「」」	
ECOC2007	6	0	4	14	4	8DPSK 9QAM	0 10 👙	FDMの 増
OFC2008	1	0	4	16	5	8-sAPSK 32APSK	16	
ECOC2008	1	0	3	15	12	128QAM (10bit/s/Hz) 8PSK	8	
OFC2009	3	0	6	12	10	64/16QAM	21	
ECOC2009	1	0	1	17	7	64/32/16QAM	9	

光通信技術のパラダイムシフト

2009年度

光通信システム

(無線通信との類似性)

水落,2009年第1回PN新世代懇談会.

光通信は無線・マイクロ波通信のほぼ35年遅れで同じトレンドを示している。

多値変調技術

2009年度	波長多重数を上げるか、
九週信シスリム	・ チャネルあたり速度の回上か(1)
● ボー・レ	ートの制限(WDMで波長フィルタで合分波を前提)
①信号	号帯域/WDMチャネル間隔 = 0.4bps/Hz, ビットレート40Gbpsの場合
バイ 多値	ゲリ変調:チャネル間隔 = 40Gbps÷0.4bps/Hz = 100GHz = 0.8nm, (1700nm-1400nm)÷0.8nm = 375波 スループット = 40Gbps×375波 = 15Tbps 変調(1024QAM:10値多重+PDM): チャネル間隔 = (40Gbps÷20)÷0.4bps/Hz = 5GHz = 0.04nm, (1700nm-1400nm)÷0.04nm = 7500波 スループット = 40Gbps×7500波 = 300Tbps
②信·	号帯域/WDMチャネル間隔 = 0.4bps/Hz, ビットレート100Gbpsの場合
多值	変調 (1024QAM:10値多重+PDM): チャネル間隔 = (100Gbps÷20) ÷0.4bps/Hz =12.5GHz = 0.1nm, (1700nm-1400nm)÷0.1nm = 3000波 スループット = 100Gbps×3000波 = 300Tbps
	 ・フィルタ帯域から考えたぎりぎりのチャネル間隔では、ビットレートを 上げてもスループットは変わらない。 ・多値化がスループット向上の有効な手段

(狭帯域化による波長多重数増加になっている)

波長多重数を上げるか、

チャネルあたり速度の向上か(3)

● PMD制限

2009年度

光通信システム

バイナリ・コード

bit rate	PMD制限距離
20Gbps	520km
40Gbps	130km
100Gbps	21 km

PMDの面からも、伝送帯域40Gbps以上は厳しい

波長分散・偏波分散のビットレート依存性

波形歪の原因

① 波長分散

$$B\sqrt{L} = \sqrt{\frac{\ln 2}{2\pi}} \frac{\sqrt{c}}{\lambda\sqrt{|\sigma_T|}} = \frac{181.9}{\lambda\sqrt{|\sigma_T|}}$$
 伝送距離制限はビットレートの
2乗に反比例

② 偏波モード分散

PMDによる波形歪は距離のルートに比例(比例定数をCとおく)

- 波形歪を打ち破る技術
 - ① 多値化 → シンボルレートを下げて狭帯域化
 - ② 偏波多重 → シンボルレートを下げて狭帯域化
 - ③ 等化器 → 時間領域/周波数領域
- SNR劣化をうち破る技術
 - ① 誤り訂正 → 軟判定FECによる符号化利得向上
 - ② 位相変調・同期検波 → デジタル・コヒーレント(イントラダイン)検波

高速デジタルLSIの進展により実現可能となってきた

DPSK送信器

バランス型検波器により光位相0, πを 電気レベル+1, -1に変換 → 電圧0に閾値を設定でき、レベル0,1 の受信より感度を3dB改善可能

^{2009年度} 光通信システム **集積型バランスド型受光器**

S. Watanabe, K. Shiba, T. Okamoto, T. Chikuma, and K. Makita(NEC), LEOS2007, Tu-BB-2.

小型化が進むDPSK 受信回路

DQPSKコンスタレーション生成

DQPSK送信器

DQPSK用変調器

M. Sugiyama, M. Doi, T. Hasegawa, T. Shiraishi, and K. Tanaka(Fujitsu), ECOC2007, 10.3.4.

- 172×17×14mm³
- Bending radius: 1mm
- Driving Voltage: 3.5V

DQPSK受信回路

2009年度 光通信システム

さらなる多値度向上の手法

多値変調(QAM)用光変調器

T. Sakamoto, A. Chiba, and T. Kawanishi(NiCT), ECOC2008, Tu.1.E.3.

^{2009年度} 光通信システム 多値変調(QAM)用光変調器を用いた伝送実験

T. Sakamoto, A. Chiba, and T. Kawanishi(NiCT), ECOC2008, Tu.1.E.3.

