第9回

光送受信器(3)・ビット誤り率(1)

2009年12月14日(月)

光インターコネクト ・LAN用送信器

^{2009年度} _{光通信システム} 光送信器(半導体レーザ)への要求拡大と改善方法

要求

- 高温動作特性(閾値電流上昇・出力低下の抑制)の改善 特にアクセス系(FTTH)用途・LAN用途は低コスト化の要求が厳しい Telcordia規格: -40°C~+85°C → -40°C~+100°C
 - 無温調化によるシステムの低コスト化・低消費電力化

改善方法

● 高∆Ec(伝導帯不連続値)材料の 導入

^{2009年度} 光通信システム 高温動作・無温調動作InGaAlAs MQWレーザ

- 伝導体不連続△Ecの拡大による温度特性改善
- 動作温度は-20℃~+100℃に拡大
- < 1000 FIT's @ 95°C
 (T. Takeshita et al. (NTT), OFC2006 OThN2)
- マスクマージン > 10% @ 10.7Gbps
 f_r向上 による低温・低バイアスでの高速動作維持 (H. Singh et al. (Opnext), OFC2006 OThN3)

^{2009年度} _{光通信システム} 半導体LDの更なる高速化への挑戦(40Gbps直接変調)

K. Nakahara et al. (Hitachi), OFC2006, OWC5

- InGaAlAs系MQW活性層による高緩和振動周波数 (2.8GHz/mA^{1/2}, f_r > 20GHz)
 DFB回折格子のノッチフリーによる低抵抗化(10Ω@100μmL)
- I_{th} = 7.4mA, η_d = 0.46W/A
- 40Gbps直接変調時に5dB消光比を実現, 2km SMF伝送

2009年度 100GbE用EAM集積DFB-LD(1) ^{光通信システム} (設計時の課題)

▶ 無温調(UncooledまたはCoolerless)による低コスト化(0~85℃)

100GbE用EAM集積DFB-LD(2) (バイアス設定による課題解決)

波長

消光比が温度に対して一定となるよう、EAMのDCバイアスを調整

高温の"0"レベルで最適離調に設定した場合: 低温 → 大きな離調を低DCバイアスで調整

100GbE用EAM集積DFB-LD(3-1)

2009年度 光通信システム

(報告例)

S. Makino(Hitachi), COIN2008, C-15-PM3-2-4 (2008).

DFB-LD: 400µm EAM: 100µm

無温調化のための技術

 高温動作時のLD特性劣化抑制 InGaAsAs系MQW構造による キャリア・オーバーフロー抑制

LDとEAMの離調調整
 オフセットバイアス調整

Dynamic Extinction Ratio:
 9.9dB(0°C), 9.6dB(85°C)

光受信器

光受信器の役割

フォトディテクタの動作原理(1)

pin-PDの構造

面入射型PDの構造

2009年度 光通信システム

pin-PDの基本特性

^{2009年度} _{光通信システム} 光受光器の高速化のポイント(1)

 α :吸収係数

フォトディテクタの動作原理(2)

APD(Avalanche Photodiode)の構造

実際のAPDの層構造

SAM型: Separate Absorption Multiplication

InGaAs-APDとInAlAs-APDの比較

イオン化率比

過剰雑音指数F (APDの増倍過程で加わる雑音の大きさの程度を表す指標)

 $F = M \left\{ 1 - (1 - k) \frac{(M - 1)^2}{M^2} \right\}$ M:増倍率, k:イオン化率比 $= M \left[k \left(1 - \frac{1}{M} \right)^2 + \frac{1}{M} \left(2 - \frac{1}{M} \right) \right]$

ここで、
$$k = \frac{\beta}{\alpha}$$
 (*if* $\alpha \ge \beta$), *or* $\frac{\alpha}{\beta}$ (*if* $\beta \ge \alpha$)
 α : 電子のイオン化率, β : ホールのイオン化率

2009年度

光通信システム

Fはkに比例し、k=0で最小, k=1で最大

イオン化率比の低減が低雑音化に重要

超格子のポテンシャルを ホールが超えにくい

2009年度 光通信システム

APDの特性評価パラメータ

受信系の基本構成(1)

受信系の基本構成(2)

光受光器の高速化のポイント(2)

面型から導波路型へ

走行遅延・受信感度のトレードオフ

導波路型 L L d

受信感度(吸収率)∝ 1-exp(-ad)

dを厚くすると感度は上がり CR時定数も低減するが、 走行遅延劣化が起きる 受信感度(吸収率)∝ 1-exp(-αL)

Lを長くすると感度があがり 走行遅延と独立に最適化設計化 (L短尺化によるCR低減は必要)

光強度変調方式における受信の基本構成

直接検波(IM-DD)方式の場合

受信回路の構成(前置増幅器あり)

T. Takeuchi, T. Nakata, K. Makita and T. Torikai (NEC), OFC2001, WQ2-1 (2001).

<u>Graded Index層付き装架型素子</u>

2009年度

光通信システム

導波路型光受信器

K. Kato, M. Yuda, A. Kozen, Y. Muramoto, K. Oguchi and O. Nakajima. (NTT), Electron. Lett., Vol.32, No.22, pp.2078-2079 (1996).

耐高光入力·高感度導波路型APD

中田、芝、牧田、佐々木、鳥飼(NEC)、信学会2004年総合大会、C-4-36.

2009年度 光通信システム 40Gbps動作導波路型APD

S. Shimizu, K. Shiba, T. Nakata, K. Kasahara, and K. Makita, Electron. Lett., vol.43, No.8, pp.476-477 (2007).

単一走行キャリアPD

石橋 ら(NTT), 1998年電子情報通信学会総合大会 C-4-12 (1998) 385.

アクセス用バースト受信器

- 異なる距離・送信パワー差などによりONU間の信号強度に差が発生
- ▶ 同レベルの電気信号に等化(自動利得等化、Auto-Gain Control, AGC)

セットアップ信号を読み取りながら、クロック抽出・同期確立

光強度

バースト受信器の構造(1)

S. Nishihara, M. Nakamura, K. Nishimura, K. Kishine, S. Kimura, and K. Kato (NTT), Electron. Lett., vol.44, No.3, pp. (2008).

2009年度

光通信システム

バースト対応TIA部

AOC: Automatic Offset Compensation

0.13µm SiGe-BiCMOS <0.76W

バースト光信号の受信

S. Nishihara, M. Nakamura, K. Nishimura, K. Kishine, S. Kimura, and K. Kato (NTT), Electron. Lett., vol.44, No.3, pp. (2008).

バースト受信器の構造(2)

J. Nakagawa, M. Nogami, N. Suzuki, M. Noda, S. Yoshima, and H. Tagami (Mitsubishi), ECOC2009, 7.5.3.

バースト受信器の構造(2)

鈴木,名倉,田上,野上,小崎,中川(三菱電機),2009年信学会ソサイエティ大会,B-10-57.

バースト対応CDR(Clock and Data Recovery)部

バースト受信器の受信特性

J. Nakagawa, M. Nogami, N. Suzuki, M. Noda, S. Yoshima, and H. Tagami (Mitsubishi), ECOC2009, 7.5.3.

第6章

ビット誤り率

- 1. 誤り率(BER)
- 2. IM-DD方式のBER
- 3. コヒーレント方式のBER

受信系の基本構成(1)

受信系の基本構成(2)

② ヘテロダイン検波

受信信号の品質評価

● 信号対雑音比(SNR: Signal to Noise Ratio)

● 誤り率(BER: Bit Error Rate)

誤り率特性

ビット誤り率(BER: Bit Error Rate): Oレベルを1レベル、1レベルをOレベルに誤判定する確率。 低ければ低いほど良い。

IM-DD方式のBER

BERの計算式

 $\frac{S_1 - v}{\sigma_1} = y, \frac{v - S_0}{\sigma_0} = y$ の変数変換を行い、p(1)=p(0)=1/2(マーク率1/2)

BER最小の条件は識別レベルが2つのガウス分布の交点に設定した場合であり、 $E_{10}=E_{01}$ である。

BERとSNRの関係

光通信のマーク、スペースの雑音量は強度・構成要素に違いがあるため等しくないが、両者の平均量を等価的な雑音量と仮定して、

$$SNR = \left\{ \frac{s_1 - s_0}{(\sigma_1 + \sigma_0)/2} \right\}^2 = 4Q^2 \quad (6.6) \quad \sum \qquad BER = \frac{1}{2} erfc(\frac{\sqrt{SNR}}{2\sqrt{2}}) \quad (6.7)$$

ただし
erfc(x):補誤差関数
erfc(x) =
$$\frac{2}{\sqrt{\pi}} \int_{x}^{\infty} \exp(-t^2) dt$$

2009年度 光通信システム

雑音の構成要素

Oレベル $\sigma 0^2 = \sigma_{id}^2 + \sigma_{ith}^2$ (背景光をOと仮定。 光源の消光比が有限の場合には考慮が必要)

ショット雑音限界

BER<10⁻⁹となるQ>6, SNR=4Q²=144=21.6dB

 B=40Gbps, ηi=1.0のとき
 Ps=185nW (-37.3dBm, マーク率1/2の時は 平均パワー-40.3dBm)
 → ビット当たり36個・平均18個の光子が必要

PIN-PDにおけるBER

1レベルの信号光ショット雑音と熱雑音の分散量(σ_1)

※ NRZ信号を仮定し、信号帯域B/2とした。

※数値例) $P_{s} = -3dBm, B = 40GHz, T = 300K, \eta_{i} = 0.8, R_{L} = 50\Omega, \lambda = 1.55\mu m$ のとき、 $k = 1.38 \times 10^{-23} J/K, \hbar = \frac{6.63 \times 10^{-34}}{2\pi} J \cdot s, \omega = 2\pi \frac{c}{\lambda} = 2\pi \frac{3 \times 10^{8}}{\lambda} Hz$ なので $2e \frac{e \eta_{i} P_{s}}{\hbar \omega} \frac{B}{2} = 3.2 \times 10^{-12} [A^{2}]$ $\frac{4kT}{R_{L}} \frac{B}{2} = 6.62 \times 10^{-12} [A^{2}]$ 熱雑音が支配的

PIN-PDにおける最小受信感度(続き)

計算結果

最小受信感度:所定のBERを達成するために必要な最小の受信光パワー

・SNR ∝ 1/B ・SNR ∝ P_s^2 同じBERを得るには $P_s \epsilon \sqrt{B}$ 倍に (帯域4倍に対し受信感度3dB劣化)

熱雑音の影響を軽減するための工夫 光通信システム 前置増幅器

高インピーダンスフロントエンド

▶ 負荷抵抗を大きくして 熱雑音の影響を低減 するため、入力インピー ダンスを大きくした増幅器 容量による帯域制限

2009年度

トランスインピーダンス フロントエンド

▶ 高感度・高速用に使用

陸上光ケーブル伝送方式: < 2.4Gbps BER < 10⁻¹¹ 10Gbps BER < 10⁻¹⁴

電話のサービスに適する:<10⁻⁶ 長時間平均符号誤り率:<10⁻⁹

などサービス・システムによって要求条件が異なる。

2009年度 光通信システム

APDにおける最小受信感度

x:過剰雑音指数(x ~ 0.5 @ GaInAsP系)

 $M \rightarrow \infty, x=0$ の場合、

$$SNR = \frac{\eta_i P_s}{2\hbar\omega(\frac{B}{2})\frac{1}{4}}$$
 ショット雑音限界と等価

APDにおける最小受信感度(続き)

計算結果

高感度化の変遷

年

2009年度 光通信システム

伝送距離の損失制限

光ファイバの損失による伝送帯域制限

非線形効果による送信出力制限(1)

光ファイバ屈折率の光強度依存性:光カー効果

$$\Delta \phi = \frac{2\pi \Delta nL}{\lambda_0} = \frac{2\pi n_2 |E|^2 L}{\lambda_0}$$

数100mWが限界。

^{2009年度} _{光通信システム} 非線形シュレーディンガー方程式による伝送解析(1)

非線形シュレーディンガー方程式

E:光の電界 β₂:2次分散値 k:波数 n₂:非線形定数=1.22×10²² m/V

入力信号(10Gbps,7段M系列)

^{2009年度} _{光通信システム} 非線形シュレーディンガー方程式による伝送解析(2)

伝送後(入力光ピークパワー:1mW, D=18ps/nm/km, L=100km)

非線形効果による送信出力制限(2)

1波長だけでも問題となる現象

誘導ブリルアン散乱(Stimulated Brillouin Scattering, SBS):
 入力光信号が光ファイバ自身の格子振動(音響フォノン)を引き起こし、
 入力方向に散乱する非線形現象。
 通常構造のファイバでは数dBmが限界

WDMで問題となる現象

- 誘導ラマン散乱(Stimulated Raman Scattering, SRS):
 入力光信号が光ファイバ自身の格子振動(光学フォノン)を引き起こし、 進行方向に散乱する非線形現象。
 積極的に光増幅器として利用する場合もある(ラマン増幅器)。
 数W程度。
- 4光波混合(Four Wave Mixing, FWM):
 2入力あるいは3入力の光信号の和周波・差周波信号を誘起する 非線形現象。
 入力光電界の3乗に比例。