第5回

光ファイバの伝送特性(2)・ 光ファイバ研究の動向

2009年11月16日(月)

2009年度 光通信システム

光ファイバの波長分散

『光通信工字(1)』 羽鳥 光俊、青山 友紀 監修 (コロナ社)より

光ファイバの分散の計算(1)

(4.9)の群遅延をテーラー級数展開して、 $\tau(\omega) = L \frac{d\beta}{d\omega} = L \left[\frac{d\beta}{d\omega} \right]_{\omega_0} (\omega - \omega_0) + \frac{d^2\beta}{d\omega^2} \Big|_{\omega_0} (\omega - \omega_0)^2 + \cdots \quad (4.24)$

(4.24)を規格化伝搬定数b, Vパラメータで表現する。

 $\beta = k[n_1^2 b + n_2^2 (1-b)]^{1/2}$ と表して、

$$\tau = \frac{L}{v_g} = L \frac{d\beta}{d\omega} = \frac{L}{c} \frac{d\beta}{dk} = \frac{L}{c} \frac{[n_2 N_2 + (n_1 N_1 - n_2 N_2)(b + \frac{1}{2}V\frac{db}{dV})]}{[n_2^2 + (n_1^2 - n_2^2)b]^{1/2}}$$
(4.25)

tetil.
$$N_{i} = n_{i} + k \frac{dn_{i}}{dk} \Big|_{\omega = \omega_{0}} = n_{i} - \lambda \frac{dn_{i}}{d\lambda} \Big|_{\lambda = \lambda_{0}}$$
(4.26)

(群屈折率または実効屈折率) ※注:分散方程式から求められる伝搬定数に基づく等価屈折率 とは異なる。波長依存性を含んだ値。

弱導波路近似(Δ<<1)が成り立つ場合、(4.25)は

$$\tau \approx \frac{L}{c} [N_2 + (N_1 - N_2) \frac{d(Vb)}{dV}]$$
 (4.27)

 $\frac{d\beta}{dk}$ を再度kで微分して2階微分を計算し、(4.23)に代入する。

$$\delta \tau = L \delta \lambda [(-\frac{1}{c\lambda_0}) \{ k \frac{dN_2}{dk} + (k \frac{dN_1}{dk} - k \frac{dN_2}{dk}) (b + \frac{1}{2} V \frac{db}{dV}) \}$$

$$\sigma_m : \hbar k + (-\frac{1}{c\lambda_0}) \frac{1}{2} \frac{(n_1 N_1 - n_2 N_2)^2}{n_2 (n_1^2 - n_2^2)} V \frac{d^2 (Vb)}{dV^2}$$
(4.28)

$$\sigma_w : \ddot{\mathbf{y}} \dot{\mathbf{x}} \dot{\mathbf{x}} \dot{\mathbf{x}} \dot{\mathbf{x}} \dot{\mathbf{x}} dh$$

光ファイバの材料分散

ステップ・インデックス型ファイバにおける光閉じ込め係数
$$\Gamma$$
は

$$\Gamma = b + \frac{1}{2}V\frac{db}{dV} = \frac{1}{2}[b + \frac{d(Vb)}{dV}] \quad (4.29)$$

材料分散のmは以下で表される。

$$\sigma_m = -\frac{1}{c} \left[\Gamma \lambda \frac{d^2 n_1}{d\lambda^2} + (1 - \Gamma) \lambda \frac{d^2 n_2}{d\lambda^2} \right]_{\lambda = \lambda_0} \quad (4.30)$$

屈折率の波長依存性

$$n^{2} = 1 + \sum_{i=1}^{3} \frac{A_{i}\lambda^{2}}{\lambda^{2} - (l_{i})^{2}}$$

例) SiO2に対して以下の数値が知られている。

光ファイバの導波路分散

導波路分散σ_wは、

$$\sigma_{w} = -\frac{1}{c\lambda_{0}} \frac{1}{2} \frac{(n_{1}N_{1} - n_{2}N_{2})^{2}}{n_{2}(n_{1}^{2} - n_{2}^{2})} V \frac{d^{2}(Vb)}{dV^{2}}$$
(4.31)

弱導波路近似(Δ<<1)が成り立つ場合は

2009年度

光通信システム

$$\sigma_{tot} = \sigma_m + \sigma_w$$

^{2009年度} 光通信システム 単一モード光ファイバの伝送帯域(分散制限)(1)

(4.11)(ガウス型パルスの伝送前のフーリエ変換)と(4.15)のフーリエ変換 (ガウス型パルスの伝送後のフーリエ変換)を比較して、変調信号の伝達関数を 求める。

$$|H(\omega)|^{2} = \frac{1}{\tau_{0}} \sqrt{\tau_{0}^{2} + \frac{(2\beta''z)^{2}}{\tau_{0}^{2}}} \exp\left[-2\left(\frac{2\beta''z}{\tau_{0}}\right)^{2}\omega^{2}\right] \quad (4.33)$$

$$|H(\omega)|^{2} = \frac{1}{\tau_{0}} \sqrt{\tau_{0}^{2} + \frac{(2\beta''z)^{2}}{\tau_{0}^{2}}} \exp\left[-\frac{\delta\tau^{2}}{\ln 2}\omega^{2}\right] \quad (4.34)$$

(4.34)の伝達関数の値が $\omega=0$ の1/2(-3dB)になる周波数 Δv (3dB帯域B)は、

$$B = \Delta v = \frac{\Delta \omega}{2\pi} = \frac{\ln 2}{2\pi |\delta \tau|} \qquad (4.35)$$

^{2009年度} 光通信システム 単一モード光ファイバの伝送帯域(分散制限)(2)

(4.35)をレーザの周波数幅△f₀と変調周波数帯域Bの相対関係に対して 場合分けして考える。

(1) 光源の周波数幅が変調周波数帯域より狭い場合($\Delta f_0 << B:DFB-LD$)

^{2009年度} 光通信システム 単一モード光ファイバの伝送帯域(分散制限)(3)

(2) 光源の周波数幅が変調周波数帯域より広い場合($\Delta f_0 > B: FP-LD$)

(4.28)の $\delta\lambda$ は光源のスペクトル幅 $\Delta\lambda_0$ となるので、

 $\Delta \lambda_0$ [nm], σ_T [ps/nm/km]単位 ^{2009年度} _{光通信システム} 単一モードと多モード(LD縦モード)の伝送特性比較

2009年度 光通信システム

伝送帯域の分散制限(△f₀<<Bの条件)

チャープによる帯域制限

分散シフトファイバによる波形広がり抑制効果

分散シフトファイバ仕様

タイプ	屈折率分布	電界分布	A _{eff} (μm ²) @ 1550nm	MFD (μm) @ 1550nm	波長分散 (ps/nm/km)	分散スロープ (ps/nm²/km) <i>@</i> 1550nm
標準SMF			80~85	10	+17	0.06
階段型 DSF			40~50	7.5~8.5	-5~+5	0.07~0.1

最近の光ファイバの研究動向

^{2009年度} 光通信システム 新規光ファイバ開発が求められる背景

ITUジャーナル vol.39, No.5 (EXAT研究会特集) 中沢 "光通信インフラの限界に挑戦する" p.3 (2009).

- マルチレベル変調(多値変調):×10 m-PSK, m-QAM, 偏波多重(PDM), O-OFDM(マルチキャリア)
- マルチコアファイバ: ×10

空間分割多重(Spatial Division Multiplexing, SDM)

📀 マルチモード制御:×10

モード分割多重(Mode Division Multiplexing, MDM)

拡大コアによる

ファイバ・フューズの問題

ITUジャーナル vol.39, No.5 (EXAT研究会特集) 笹岡, 武笠, Abedin "光ファイバの限界と 課題" p.9 (2009).

ファイバフューズ発生実験

2009年度

光通信システム

ファイバフューズの発生閾値

コア拡大により閾値拡大可

ファイバフューズ発生後の光ファイバ

2009年度

光通信システム

光ファイバの特性改善例と研究課題

ITUジャーナル vol.39, No.5 (EXAT研究会特集) 笹岡, 武笠, Abedin "光ファイバの限界と 課題" p.8 (2009).

_		
	伝送容量へのインパクト	光ファイバの課題
モード数拡大 1 → 10	 モード多重による容量拡大 (MIMO等伝送技術は必要) V値3倍強(単純ステップ型) →コア断面積10倍(Δn維持) →非線形性低減 	 モード数増加だけであれば 課題なし モード分散制御・モード間 結合の抑制等に対して 新規設計・開発必要
コア数増大 1 → 10	各コアが従来と同等性能 であれば容量10倍	 コア間クロストークを考慮した設計 製造技術開発 ファイバ相互・機器間接続
伝送損失 1/10	 光SNR確保 強度/振幅変調多値化 入力パワー減による位相の 非線形ノイズ低減 → 位相/周波数変調多値化 非線形性低減の可能性 	 PBGFや 石英以上に透明な新材料

① フォトニック結晶ファイバ

Photonic Crystal Fiber (PCF)

Photonic Bandgap Fiber (PBF)

Hole Assisted Fiber (HAF)

Multi-Core Fiber

Photonic Crystal Fiber (PCF)

大薗, Yao, 滑川,日立電線No.26、p.73 (2007-1).

- 石英コアと外周構造の等価屈折率差による閉じ込め
- *d*/*A* ≤ 0.43 のとき、すべての波長域においてシングルモード可
 d:空孔径
 A:空孔間隔
- 低損失化が課題(2dB/km程度)

PCFの分散特性

(左側写真) http://www.bath.ac.uk/physics/groups/opto/pcf.html

(右側データ)http://www.bath.ac.uk/physics/groups/opto/documents/PECS%20pcf.PDF

2009年度 フォトニックバンドギャップファイバ 光通信システム

Photonic Bandgap Fiber (PBGF)

大薗, Yao, 滑川,日立電線No.26、 p.75 (2007-1).

2009年度 光通信システム FTTH用空孔アシストファイバ(HAF)

● 収容面積:36分の1 (曲率半径5mm) ^{2009年度} _{光通信システム}更なる大容量伝送を支えるマルチコア・ファイバ(1)

非結合マルチコアファイバ

ITUジャーナル vol.39, No.5 (EXAT研究会特集) 國分,小柴 "シングルコア光ファイバの限 界を打ち破るマルチコアファイバ" p.17 (2009).

^{2009年度} _{光通信システム}更なる大容量伝送を支えるマルチコア・ファイバ(2)

結合マルチコアファイバ

ITUジャーナル vol.39, No.5 (EXAT研究会特集) 國分,小柴 "シングルコア光ファイバの限 界を打ち破るマルチコアファイバ" p.18 (2009).

コア間を強結合させ、異なる伝搬定数のモードに 伝送チャネルを配置