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1 Strategic Equilibrium and Cores

Let G = (N, {Xi}i∈N, {ui}i∈N) be a game instrategic form, whereN is a finite

set of players,Xi is a compact convex set of pure strategies of playeri and

ui is a continuous payoff function of playeri. A nonempty subsetS ⊆ N is

called acoalition. For each coalitionS, defineXS = Πi∈SXi, andX = XN.

Any singleton coalition{i} is often identified withi.

1.1 Strong Nash, and Coalition-Proof Nash Equilibrium

For anyx, y ∈ X, we definex = (xT, yN−T) if T = N, andy = (xT, yN−T)

if T = ∅. For any given vectorf ∈ <n, we will denote (fi)i∈S by fS, and the

relation≥ is understood in coordinate-wise.

Definition 1. Let x ∈ X be given. Then, for each nonemptyS ⊆ N, we sayS

has a deviationyS ∈ XS at x if and only if

uS(yS, xN\S) > uS(x).
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This definition seems to presume that coalitionS can make a binding

agreement as to the joint choice of strategies inS. Later, we will modify this

definition into one that may avoid the assumption of binding agreements.

Definition 2. An n-tuple of strategiesx ∈ X is a strong Nash equilibrium if

and only if there exists no coalitionS ⊆ N that has a deviation atx.

This definition is due to Aumann [1]. A strong Nash equilibrium isweakly

Pareto efficient, and generally hard to obtain. Exceptions are Aumann [1],

Kalai, Postlewaite and Roberts [13], Peleg [20], Greenberg and Weber [7],

Holzman and Law-Yone [10], Nishihara [19], and Hirai et al. [9].

1.1.1 Voluntary Contribution to Public Goods

As a straightforward example of a strategic game, we consider a model of

a voluntary provision of public goods.
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Let G be a strategic game withXi = [0,mi], wheremi > 0 andxi ∈ Xi is

i’s voluntary contribution to the public expenditure. The utility to eachi is

given by

ui(x) = vi(
∑

j∈N
x j, mi − xi),

wherevi is a continuous, quasiconcave and monotone increasing utility func-

tion. Then:

Proposition 1. Let x∗ be a Nash equilibrium. Ifx∗i = mi for all i ∈ N, then

x∗ is a strong Nash equilibrium.

Proof.This is a consequence of the following lemma.

Lemma. Letx∗ ∈ X be a Nash equilibrium, and let there be anx ∈ X

such that for somei ∈ N, ui(x) > ui(x∗). Then,
∑

j,i x j >
∑

j,i x∗ j.

5



Suppose thatx∗ is not a strong Nash equilibrium. Then, there must exist

anS ⊆ N with |S| > 1 andxS ∈ XS such thatuS(xS, x∗N\S) > uS(x∗). Then,

letting x̄ = (xS, x∗N\S) and choosingi ∈ S arbitrary, it follows from the

lemma that
∑

j,i

x̄ j =
∑

j<S

x∗ j +
∑

j∈S\{i}
x j

>
∑

j,i

x∗ j

=
∑

j<S

x∗ j +
∑

j∈S\{i}
x∗ j

Hence, ∑

j∈S\{i}
x j >

∑

j∈S\{i}
x∗ j =

∑

j∈S\{i}
mj,

which is a contradiction to the fact thatxS ∈ XS. �
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Whenx∗ is not weakly Pareto optimal, we may take a weakly Pareto optimal

x ∈ X that satisfies the inequality in the lemma. Then, adding both sides for

all i ∈ N, we see that the level of public expenditure at the Nash equilibrium

is less than the one that is weakly Pareto optimal.

■Problem 0 Try to prove the lemma. The monotonicity ofvi is all we need.

1.1.2 Coalition-Proof Nash Equilibrium

In an attempt to weaken the definition of strong Nash equilibrium, Peleg [4]

formulated the notion ofcoalition-proof Nash equilibrium(CPNE for short).

For anyx ∈ X and coalitionS, denote byG|xN\S the subgameG′=(S, {Xi}i∈S,

{ui}i∈S) induced by fixingxN\S. We assume thatG′ = G whenS = N.
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Definition 3. Let x ∈ X be given. Then:

1. For eachi ∈ N, we sayxi is coalition-proof in G|xN\i iff

∀yi ∈ Xi, ui(x) ≥ ui(y
i, xN\i).

2. For eachS ⊆ N with 1 ≤ |S| < m, assume that the definition of the

coalition-proofness ofxS in G|xN\S is completed. Then, for eachS ⊆ N

with |S| = m, we say

（a）xS is self-enforcing in G|xN\S iff for all T ( S, xT is coalition-proof

in G|xN\T; and

（b）xS is coalition-proof inG|xN\S iff it is self-enforcing in G|xN\S and

there does not existyS ∈ XS such thatyS is self-enforcing in G|xN\S

and∀i ∈ S, ui(yS, xN\S) > ui(x).

We sayx ∈ X is coalition-proof iff x is coalition-proof inG.
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Definition 4. Let x ∈ X be given. Then, for each nonemptyS ⊆ N, we sayS

has acredible deviation at x if and only ifS has a deviationyS ∈ XS at x

such that there exists noT ( S which has acredible deviationat (yS, xN\S).

When S = {i}, i has a credible deviationyi at x iff ui(yi, xN\i) > ui(x).

Hence, forS with |S| > 1, the definition of a credible deviation follows

inductively.

This definition avoids at least the bindingness of the coalition itself: devi-

ations may trigger further deviations by subcoalitions. Hence, only credible

deviations deserve consideration.

Theorem 1.Let x ∈ X be given. Then, for each nonemptyS ⊆ N, xS is

coalition-proof in G|xN\S iff there exists noT ⊆ S which has a credible

deviation atx in G|xN\S.
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Proof.When|S| = 1, the assertion follows directly from the definitions. As-

sume that|S| = m> 1 and that the assertion is true for anyS with |S| < m.

necessity:. Suppose that there existsT ⊆ S which has a credible devi-

ation yT ∈ XT. Then, for anyR ( T, there exists no credible deviation at

(yT, xN\T). By the induction hypothesis, this means that for any fixedR( T,

yR is coalition-proof inG|(yT\R, xN\T) since no subset ofR has a credible de-

viation. Hence, by Definition 3,yT is self-enforcing inG|xN\T. But, sinceyT

was a credible deviation atx, it must be true that∀i ∈ T, ui(yT, xN\T) > ui(x).

Hence,xT is not coalition-proof inG|xN\T; so that,xS is not self-enforcing in

G|xN\S. Hence,xS cannot be coalition-proof inG|xN\S.

sufficiency:. Suppose thatxS is not coalition-proof inG|xN\S. If xS is not

self-enforcing inG|xN\S, then for someT ( S, xT is not coalition-proof in

G|xN\T. It then follows from the induction hypothesis that there existsR⊆ T

which has a credible deviation atx. On the other hand, ifxS is self-enforcing,

then, by Definition 3, there exists another self-enforcingyS ∈ XS such that
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∀i ∈ S, ui(yS, xN\S) > ui(x). Then, for anyT ( S, yT must be coalition-

proof in G|(yS\T, xN\S). By the induction hypothesis, there must not exist

any T′ ⊆ T ( S which has a credible deviation at (yS, xN\S). Hence, by

Definition 4,yS must be a credible deviation atx. �

Corollary 1. A strong Nash equilibrium is coalition-proof.

Thus, if a strong Nash equilibrium exists, it can be reached without binding

agreements among players. If not, at any strategy combination, some coali-

tion can deviate from it. But, this deviation in general will require a binding

agreement as to the choice of strategies.

Problem 1. Assume thatS ⊆ N has a credible deviation atx ∈ X. Then,

there exists a strategy profilex∗S ∈ XS that is coalition-proof in the subgame

G| xN\S.

Remark 1. The CPNE in the above problem depends on the givenx except

for S = N. Conditions for general existence of CPNE are not known.
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Theorem 2.Letx ∈ X be a unique Nash equilibrium of a gameG, and for any

nonemptyS ⊆ N, the subgameG|xN\S has also a unique Nash equilibrium.

Then,x is a coalition-proof Nash equilibrium ofG.

Problem 2. Prove this theorem.

Example 1.A Three Person Game

C◦1
B1 B◦2

A1 1,1,−5 −5,−5,0

A◦2 x,−5,0 0,0,10

C∗2
B∗1 B2

A∗1 −1,−1,5 −5,−5,0

A2 −5,−5,0 −2,−2,0

case x=-5: (A2, B2,C1) is a Nash equilibrium (Check it!); but not coalition-

proof. FixC1 and consider the subgameG|C1. (A2, B2) is a Nash equilibrium,
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and hence, self-enforcing inG|C1. But (A1, B1) is also a Nash equilibrium

(self-enforcing) in the same subgame which is better for both players A and

B. Hence (A2, B2) is not coalition-proof inG|C1. Hence, (A2, B2,C1) is not

self-enforcing, which shows that (A2, B2,C1) is not coalition-proof.

(A1, B1,C2) is a coalition-proof Nash equilibrium.

case x=2: (A2, B2,C1) is now a coalition-proof Nash equilibrium; but,

(A1, B1,C2) is not. In the subgameG|C1, (A2, B2) is self-enforcing as be-

fore. But now, (A1, B1) is not self-enforcing inG|C1, because (A1, B1) is

no longer a Nash equilibrium in this subgame (A will deviate). Hence

(A2, B2) is coalition-proof, because it is undominated by any self-enforcing

strategy pair inG|C1. Coalition-proofness for every other coalition is easily

checked. Hence (A2, B2,C1) is self-enforcing and undominated by any other

self-enforcing strategy triple.
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There are several economic applications of CPNE. Wako [27] considers

an economy with multiple indivisible goods, and shows that a strategic game

describing the transactions in this economy has a unique CPNE. Nishihara

[19] presents an analysis of N-person prisoners’ dilemma, in which a Nash

equilibrium is coalition-proof, and if the Nash equilibrium is Pareto efficient,

then it is a strong equilibrium. See also Hirai et al. [9].

1.2 The α− and β− Cores

1.2.1 NTU games

The cooperative solution concept of cores have been extended to strategic

games with coalitions by Aumann and Peleg [3].

Let G = (N, {Xi}i∈N, {ui}i∈N) be a strategic game with coalitions, and letS

be a nonempty subset ofN.
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Definition 5. CoalitionS is said to beα-effective for a payoff vectorνS ∈ <S

iff

∃xS ∈ XS, ∀xN\S ∈ XN\S, uS(xS, xN\S) ≥ νS.

The set of all payoff vectors for whichS is α-effective is denoted byvα(S).

Thus,S is α-effective forνS if S can assure itself of getting at leastνS.

Definition 6. CoalitionS is said to beβ-effective for a payoff vectorνS ∈ <S

iff

∀xN\S ∈ XN\S, ∃xS ∈ XS, uS(xS, xN\S) ≥ νS.

The set of all payoff vectors for whichS is β-effective is denoted byvβ(S).

Thus,S is β-effective forνS if N \S cannot preventS from getting at least

νS.
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Let vα(∅)=vβ(∅) = ∅; and

vα(N) = vβ(N) = {ν ∈ <N|uN(x) ≥ ν, ∃x ∈ X}.
Definition 7. An NTU game(N, v) derived from the strategic form gameG is

called theα-NTU game if∀S ⊆ N, v(S)= vα(S). Similarly, the NTU game

(N, v) is called theβ-NTU game if∀S ⊆ N, v(S) = vβ(S).

Remark 2. By definition,vα(S)⊂vβ(S). (see also the problem below).

Definition 8. The core of a NTU game(N, v) is the set of undominated payoff

vectorsν ∈ v(N), i.e., a subset ofv(N) for which there is no coalitionS ⊆ N

such that

∃uS ∈ v(S), uS > νS.

Definition 9. The core of anα (β)-NTU game(N, v) is called theα (β)-core.

Problem 3. Show that, given a gameG, uS E⊂ β-core⊂ α-core, whereuS E

is the set of utility vectors corresponding to the strong Nash equilibria inG.
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1.2.2 Scarf’s Core Existence Theorem

Scarf [23] proved a beautiful theorem on the existence of anα-core.

Theorem 3.(Scarf.) Assume that for eachi ∈ N, Xi is a compact convex set,

andui is quasi-concave inx ∈ X. Then theα-core is nonempty.

Example 2.(Scarf):( emptyβ-core with nonemptyα-core)

N = {1,2,3}; one goodA and one badB;

Xi = {xi = (xi1
A , x

i2
A , x

i3
A ; xi1

B , x
i2
B , x

i3
B)

|∑ j∈N xi j
A ≤ 1,

∑
j∈N xi j

B = 1, xi j
A ≥ 0 and xi jB ≥ 0},

ui(x) = ui(
∑

j∈N x ji ) =
∑

j∈N x ji
A −

∑
j∈N x ji

B.
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Claim: α-core, ∅ and u0 = (0,0,0) ∈ α − core.

Proof.Every condition of Scarf is satisfied; so that theα-core, ∅.
The payoff vectoru0 cannot be dominated via singleton set{3} because

for any x3, {1,2} can dump 2 units of bads onto{3} so that the utility of 3 is

negative.

The payoff vectoru0 cannot be dominated via 2-person set{1,2} either,

since for anyx12, {3} can dump one unit of bad onto one of{1,2}, thereby

making the utility of one of them non-positive.u0 is Pareto efficient. �
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Claim: β-core is empty.

Proof.Let u = (u1,u2,u3), u1 ≥ u2 ≥ u3 be any feasible utility allocation.

Then,
∑

j∈N u j ≤ 0. Every 2-person coalition{i, j} can attain any (ui,u j)

with ui + u j ≤ 1, because for anyxk,{i, j} can dump 2-units of bads onto

{k}, thereby re-allocating 2-units of goods between them to compensate the

disutility caused byxk (i.e., by the bad dumped byk onto{i, j}).
If u ∈ β-core, thenu3 < 0; otherwiseu1 = u2 = u3 = 0, which isβ-

dominated via any 2-person coalition. But thenu2 ≥ 1, becauseu2 < 1

implies thatu is β-dominated via{2,3}. Sinceu1 ≥ u2, it follows thatu3 ≤
−2, which isβ-dominated via{3}. (Note thatvβ({i}) = (−∞,−1], for all

i ∈ N). Contradiction. �
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1.2.3 Existence of β-cores

We now state a sufficient condition for the existence of aβ-core appeared

in Nakayama [16].

Definition 10. Let ∅ , S ( N. Then,N \ S is said to have adominant

punishment strategydN\S ∈ XN\S againstS iff

∀zS ∈ XS,∀zN\S ∈ XN\S, uS(zS, zN\S) ≥ uS(zS,dN\S).

Definition 10+. Let ∅ , S ( N. Then S has adominant strategy

(S−dominant strategy) xS ∈ XS iff for all z ∈ X, uS(xS, zN\S) ≥ uS(z).

Theorem 4. Assume that for each nonemptyS ( N, either N \ S has a

dominant punishment strategy againstS, or S has anS− dominant strategy.

Then, under the Scarf ’s condition theβ-core is nonempty and identical to the

α-core.
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Proof. It will be enough to show that for any given payoff vectorνS, S is α

-effective forνS iff S is β-effective forνS.

Let S beβ-effective forνS. Then, for allxN\S ∈ XN\S there is a strategy

xS ∈ XS such that∀i ∈ S, ui(xS, xN\S) ≥ νi. Thus, for the dominant punish-

ment strategydN\S ∈ XN\S, there is a strategyx(dN\S) ∈ XS such that∀i ∈ S,

ui(x(dN\S),dN\S) ≥ νi. But, sincedN\S is a dominant punishment strategy, it

follows that

uS(x(dN\S), zN\S) ≥ uS(x(dN\S),dN\S) ≥ νS,

which implies that by choosing the strategyx(dN\S), S can assure itself the

payoff vectorνS. The converse follows by definition. (Problem: Complete

the proof.)

�
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Thus, whatS can assure itself is precisely those payoff vectors whichN\S
cannot preventS from getting. The set of payoff vectors thatS can assure

itself is determined by the dominant punishment strategy ofN \ S. More

than thirty years ago, Jentzsch [12] called such a strategyoptimal and the

payoffs structure with the optimal strategyclassicalpaying attention to the

zero-sum-like situation betweenS andN \ S. Thus, the existence of a dom-

inant punishment strategy will be limited only to a narrow class of games -

theclassical games. Nevertheless, there is a natural important economic ex-

ample of a game with this payoffs structure; namely, the pure exchange game

(see Scarf [23], and also Mas-Colell [14]).

Problem 4. Let G be the pure exchange game with nonnegative strategies

whereXi = {xi = (xi1, . . . , xin)| ∑
j∈N xi j ≤ ωi,and∀ j ∈ N, xi j ∈ <m

+}
ui(x) = fi(

∑
j∈N x ji ), where fi is continuous, quasi-concave and monotone

nondecreasing in
∑

j∈N x ji . Show that this game has a nonemptyβ-core.
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The public good game mentioned in Mas-Colell [14] is also an example of

a game with a nonemptyβ−core.

Recently, a progress on the existence ofβ-cores is made also in the class

of TU gamesby Zhao [29], in which a slightly weaker condition is shown to

be sufficient for the existence of theβ-core that is identical to theα-core. He

also shows a similar condition is sufficient for the existence of theα-core in

TU games.

2 Self-Binding Coalitions

Implicit in the theory of cooperative games is an assumption that players

can make abinding agreement. Due to this assumption, any coalition can be

formed once players agree to do so. In this section, we review an attempt in

Nakayama [16] of a cooperative game withself-binding coalitionsthat may

enable to dispense with the assumption of binding agreements.
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Before doing so, we list some comments on the binding agreements ap-

peared in the literature.

2.1 Comments on the Binding Agreements in the Literature

2.1.1 von Neumann and Morgenstern [25, pp.223–224]

Two players who wish to collaborate must get together on this subject be-

fore the play, i.e., outside game. The player who lives up to his agreement

must possess the conviction that the partner too will do likewise. As long as

we are concerned only with the rules of the game, we are in no position to

judge what the basis for such a conviction may be. In other wordswhat, if

anything, enforces the ”sanctity” of such　 agreements? . . . On a later

occasion we propose to investigate what theoretical structures are required in

order to eliminate these concepts. (I.e.,auxiliary concepts such as ”agree-

ments”, ”understandings”,etc.) We shall . . . make use of the possibility of

the establishment of coalitions outside the game; this will include the hy-
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pothesis that they are respected by the contracting parties.

2.1.2 Nash [17, pp.286–295]

By a cooperative game we mean a situation . . . with the assumption that the

players can and will collaborate as they do in the von-Neumann and Morgen-

stern theory. This means the players may communicate andform coalitions

which will be enforced by an umpire.

. . . The problem of analyzing a cooperative game becomes the problem of

obtaining a suitable, and convincing, non-cooperative model for the negotia-

tion.

2.1.3 Nash [18, pp.128–140]

The word cooperative is used because the two individuals are supposed to

be able to discuss the situation and agree on a rational joint plan of action,

an agreement that should be assumed to be enforceable. . . . A game is
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non-cooperative if it is impossible for the players to communicate or collab-

orate in any way. SupposingA and B to be rational beings, it is essential

for the success of the threat thatA be compelled to carry out his threat ifB

fails to comply . . . The point of discussion is that we must assume there is

an adequate mechanism for forcing the players to stick to their threats and

demands once made; and one to enforce the bargain, once agreed. Thuswe

need a sort of umpire, who will enforce contracts or commitments.

2.1.4 Aumann [2, pp.67–96]

. . . . both the non-cooperative and the cooperative theory involve agree-

ment anong the players, the difference being only in that in one case the

agreement is self-enforcing,whereas in the other case it must be exter-

nally enforced.
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2.1.5 Harsanyi and Selten [8]

A non-cooperative game is a game modeled by making the assumption

that the players are unable to make enforceable agreements except insofar as

the extensive form of the game explicitly gives them an ability to do so. In

contrast, a cooperative game isa game modeled by making the assumption

that the players are able to make enforceable agreementseven if their

ability to do so is not shown explicitly by the extensive form of the game. . . . .

(By our solution theory), the problem of defining a solution for a cooperative

gameG can always be reduced to the problem of defining a solution for a

non-cooperative bargaining gameB(G).

2.2 Self-Binding Strategies

Definition 11. For all nonemptyT ⊆ N, T has anα-deviationyT ∈ XT at

x ∈ X if and only if

∀z ∈ X, uT(yT, zN\T) > uT(x).
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Definition 12. For all nonemptyT ⊆ N, T has acredible α - deviation at

x ∈ X if and only ifT has anα-deviationyT ∈ XT at x such that for allz ∈ X

there exists noR( T which has a credibleα-deviation at(yT, zN\T).

Note that the definition is not circular. Note also that every deviating subset

Rof T must confront the same strategic environment as that ofT, i.e.,Rmust

take all the reactions ofN \ R into consideration.

Definition 13. For all S ⊆ N, xS ∈ XS is aself-binding strategyfor S if and

only if for all z ∈ X, noT ⊆ S has a credibleα-deviation at(xS, zN\S).

A self-binding coalitionis one that has a self-binding strategy. In charac-

teristic function form, Ray [21] defined acredible coalitionto be one that

can sustain itself by assuring each of the members a certain level of utility.

Note that 1-person coalition is always self-binding by the maximin strategy.

Problem 5. Let x ∈ X, andT ⊆ N. Then, ifT has anα-deviation atx, some

R⊆ T has a credibleα-deviation at x. Prove this fact.
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The self-binding coalition can be related to theα−core as follows.

Theorem 5.

1. N is a self-binding coalition iff theα-core is nonempty.

2. LetS ( N have a credibleα− deviation atx ∈ X. ThenS is self-binding.

Proof.1. Suppose that theα − core is empty. Then,at anyx there is a subset

S ⊆ N that has anα-deviation . Then, Problem 5 implies that there is a subset

T ⊆ S that has a credibleα-deviation atx. Hence,x cannot be a self-binding

strategy ofN, which contradicts the hypothesis thatN is self-binding.

Conversely, letx ∈ X be in theα-core. Then, no subsetT has anα-

deviation atx, which implies that no subsetS has a credibleα- deviation at

x.
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2. Let the credibleα-deviation atx ∈ X be yS. Then, for anyz ∈ X, no

proper subsetT ( S has a credibleα− deviation at (yS, zN\S). Thus, if S

itself does not have a credibleα− deviation at (yS, zN\S), thenyS is a self-

binding strategy ofS. Indeed, simply takingyS to be one undominated by

any other credibleα−deviation atx by S, yS satisfies the requirement for the

self-binding strategy. �

The next theorem provides a sufficient condition for a given coalition to be

self-binding.

Theorem 6.Assume that for alli ∈ N, ui is continuous and quasi-concave

in x ∈ X; and thatS ⊆ N is nonempty and proper. Then,S is a self-binding

coalition if N \ S has a dominant punishment strategy againstS.
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Proof.Let dN\S be the dominant punishment strategy. Then, sinceui(· ,dN\S)

is quasi-concave for alli ∈ S, it follows from Theorem 5 and the Scarf’s

theorem [23] that there exists a self-binding strategyxS ∈ XS for S in the

subgame induced by holdingxN\S fixed todN\S. Then, for anyT ⊆ S and any

yT ∈ XT, there must existz ∈ XS such thatui(yT, zS−T,dN\S) ≤ ui(xS,dN\S) for

somei ∈ T. Hence, there existsw ∈ X such thatui(yT,wN−T) ≤ ui(xS,dN\S)

for somei ∈ T. SincedN\S is a dominant punishment strategy, it follows that

for all xN\S ∈ XN\S,

∃i ∈ T, ui(y
T,wN−T) ≤ ui(x

S,dN\S) ≤ ui(x
S, xN\S),

which implies that noT ⊆ S has anα-deviation at (xS, xN\S). Hence, for all

xN\S, there exists noT ⊆ S that has a credibleα-deviation at (xS, xN\S), so

thatxS is a self-binding strategy forS.

�
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Problem 6.Show that in the pure exchange game with nonnegative strategies

(see Problem 4), every nonempty subset ofN is a self-binding coalition.

2.3 Derivation of NTU Market Games

In the pure exchange game, every coalitionS acquires the setν(S) of pay-

off vectors that S can assure itself:

ν(S) = {ν ∈ <N| ∃xS ∈ XS ∀z ∈ X, uS(xS, zN\S) ≥ νS := (νi)i∈S}
On the other hand, defining for each coalitionS anS-allocationto beyS =

{yi}i∈S satisfying∀i ∈ S, yi ∈ <m
+ and

∑
i∈S yi =

∑
i∈S wi, the following set

V(S) of payoff vectors can be associated to each coalitionS:

V(S) = {ν ∈ <N| ∃S − allocation yS ∀i ∈ S, fi(y
i) ≥ νi},

where the utility functionfi is the same as inProblem 4.
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Then, it is easy to show thatν(S) is identical toV(S) by considering for

any givenS-allocationyS the strategyxS defined by

xi j,k =
ωi,ky j,k

∑
i∈Sωi,k

, i, j ∈ S, k = 1 . . .m.

The collection{V(S)|S ⊆ N} is called theNTU market game (see Scarf

[22]).

Problem 7. Show thatν(S) is identical toV(S) for all S ⊆ N.

In this way, the NTU market game is derived from the pure exchange game,

so that every coalition of the market game is also self-binding. It is this result

that may explain why a market game, whether it is of TU or NTU, has been

a central economic application of cooperative game theory.
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3 NTU Cores and Related Topics

3.1 Core Equivalent Strong Nash Equilibria of the Pure Exchange Game

3.1.1 Scarf’s Pure Exchange Game

A typical economic example of strategic games with coalitions is thepure

exchange gamedue to Scarf [23].

Let N = {1, . . . , n} be the set of players, and letw = (w1, . . . ,wn) ∈ <nm
+ ,

wherewi = (wi
1, . . . ,w

i
m) ∈ <m

+ , be a vector of initial endowments. For each

S ⊆ N, a vectory = (y1, . . . , yn) ∈ <nm
+ with yi = (yi

1, . . . , y
i
m) ∈ <m

+ is an

S-allocationif it satisfies
∑

i∈S yi =
∑

i∈S wi, i.e.,
∑

i∈S
yi

h =
∑

i∈S
wi

h, h = 1, . . . ,m.

The utility functionvi(yi) of player i is assumed to be continuous, quasi-

concave and monotone nondecreasing inyi.

Thecoreof a pure exchange economy is the set ofN−allocationsy∗ that
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are not dominated, i.e., the set ofN−allocationsy∗ such that for anyS ⊆ N

there is noS−allocationy satisfying:vi(yi) > vi(y∗i), ∀i ∈ S.

Let Xi be the set of strategies of playeri given by

Xi = {xi ∈ <nm | xi = (xi1, . . . , xin), xi j = (xi j
1 , . . . , x

i j
m);

∑

j∈N
xi j

h = wi
h, h = 1, . . .m}.

Then, thepure exchange gameis a strategic gameG = (N, {Xi}, {ui}) with an

outcome functiong : X→<nm
+ such that

g(x) =


(
∑

j∈N x j1, . . . ,
∑

j∈N x jn) i f (·) ∈ <nm
+ ,

w otherwise

The payoff ui(x) to playeri in the gameG is defined to be

ui(x) = vi(g(x)i)

whereg(x)i is thei-th component ofg(x).
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Note that the outcome functiong generates anN−allocation, since
∑

i∈N

∑

j∈N
x ji =

∑

j∈N

∑

i∈N
x ji =

∑

j∈N
w j.

Remark 3. Here, the strategies are not assumed to be nonnegative. The orig-

inal Scarf’s pure exchange game restricts the strategies to be nonnegative.

Later, we also assume the nonnegativity.

Proposition 2. Any N−allocation at a strong Nash equilibrium ofG =

(N, {Xi}, {ui}) is contained in the core of the pure exchange economy.

Proof.Let y∗ be anN−allocation that is not in the core. Then, there is an

S−allocationy that dominatesy∗. Let x∗ ∈ X be any strategy combination

that attainsy∗, and define:

xi j
h =

wi
h∑

i∈S wi
h

(y j
h −

∑

k∈N\S
x∗k j

h ).
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Then,
∑

j∈N
xi j

h =
wi

h∑
i∈S wi

h

(
∑

i∈N
yi

h −
∑

j∈N

∑

k∈N\S
x∗k j

h )

=
wi

h∑
i∈S wi

h

(
∑

i∈N
wi

h −
∑

i∈N\S
wi

h) = wi
h.

Hence,

xi ∈ Xi for all i ∈ N.

Moreover, ∑

i∈S
xi j

h = y j
h −

∑

k∈N\S
x∗k j

h .

Therefore, theS−allocationy is attained by the deviationxS at x∗. By as-

sumption, then, we have

ui(x
S, x∗N\S) > ui(x

∗), for all i ∈ S,

which shows thatx∗ is not a strong Nash equilibrium. �
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Note that the strategyxS defined in the proof by

xi j
h =

wi
h∑

i∈S wi
h

(y j
h −

∑

k∈N\S
x∗k j

h )

satisfies, as shown below, the equality that
∑

i∈S

∑

j∈N\S
xi j

h =
∑

i∈S

∑

j∈N\S
x∗ ji

h , h = 1, ...,m.

This means that when deviating fromx∗, coalitionS returns the amount of

goods toN \ S exactly what it obtains fromN \ S. In other words,S is

deviating with only resources available withinS. In this sense, the deviation

xS may be called theself-supportingdeviation. Thus, the above proposition

still holds if deviations are restricted to the self-supporting ones.
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We will show that if only self-supporting deviations are allowed, the con-

verse of the above proposition also holds. Before this, we shall verify that

the deviationxS is self-supporting.

Note that sincey is anS-allocation, it is anN \ S-allocation whenevery is

anN-allocation. Hence, for thisy we have

∑

i∈S

∑

j∈N\S
xi j

h =
∑

i∈S

wi
h∑

i∈S wi
h


∑

j∈N\S
y j

h −
∑

j∈N\S

∑

k∈N\S
x∗k j

h



=

∑
i∈S wi

h∑
i∈S wi

h


∑

j∈N\S
w j

h − (
∑

k∈N\S
wk

h −
∑

j∈S

∑

k∈N\S
x∗k j

h )



=
∑

j∈S

∑

k∈N\S
x∗k j

h , h = 1, . . . ,m.

Proposition 3. The core of the pure exchange economy coincides with the

set ofN-allocations attained by the strong Nash euilibrium with only self-

supporting deviations being permissible.
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Proof.Suppose thatx∗ ∈ X admits a self-supporting deviationxS ∈ XS by

a coalitionS. Then, the allocationg(xS, x∗N\S) is anS-allocation as shown

below. SincexS is in XS,
∑

i∈S

∑

j∈S
xi j

h +
∑

i∈S

∑

k∈N\S
xik

h =
∑

i∈S
wi

h, h = 1, ...,m.

But then, the definition of self-supporting deviations implies
∑

i∈S

∑

j∈S
xi j

h +
∑

j∈N\S

∑

i∈S
x∗ ji

h =
∑

i∈S
wi

h, h = 1, ...,m.

Hence,g(xS, x∗N\S) is anS-allocation. Then, the allocationg(x∗) is improved

by theS-allocationg(xS, x∗N\S), which implies that when the allocationg(x∗)
is in the core, the strategy profilex∗ is a strong Nash equilibrium with devia-

tions being restricted to be self-supporting.

The converse follows from the above proposition and the remark that the

deviation there is self-supporting. �
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3.2 Punishment Dominance and Convex NTU Games

Recall that an NTU game (N,V), or simplyV is convexiff

V(S) ∩ V(T) ⊆ V(S ∪ T) ∪ V(S ∩ T) ∀S,T ⊆ N.

Let V satisfy the condition

S,T ⊆ N⇒ V(S) ∩ V(T) ⊆ V(S ∪ T).

Then, this gameV is convex, and moreover, balanced. Convexity is straight-

forward. Balancedness follows from the repeated use of the above condition

to obtain ⋂

S∈B
V(S) ⊆ V(

⋃

S∈B
S) ⊆ V(N).

Such a game is of course exceptional. But Masuzawa[15] presented an

interesting condition for an NTU game to have this property. There are many

examples of the TU convex game, but a strategic environment generating
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NTU convex game is not known. We show below that the condition called

thepunishment dominancemakes it possible to obtain NTU convex games.

Definition 14. Let S ⊆ N, xS, yS ∈ XS. Then, we sayxS is punishment

dominant overyS againstN \ S, and writexSPSyS, if for all z ∈ X we have

ui(zN\S, yS) ≥ ui(zN\S, xS) ∀i ∈ N \ S.

Assumption 1.For all i ∈ N, and all xi, yi ∈ Xi, xi is punishment dominant

overyi againstN \ {i}, or yi is punishment dominant overxi againstN \ {i}.
This assumption says that a strategy of a player can make all of the other

players’ payoffs larger or smaller. Typical examples of this situations would

be the n-person Prisoner’s Dilemma, the greenhouse effects, public goods.

Theorem 7.　 Under Assumption (1) ,

V(S) ∩ V(T) ⊆ V(S ∪ T) ∀S,T ⊆ N,

whereV = Vα.
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Proof.For each playeri, let xi, yi ∈ Xi be two arbitrary strategies, and define

p(xi, yi) = xi ⇐⇒ yiPixi,wherePi := P{i}.

That is,p(xi, yi) is the one that is ’less’ punishment dominant among the two

xi andyi.

Let v ∈ V(S) ∩ V(T). By the definition ofVα, the alpha−effectiveness,

there existaS ∈ XS andbT ∈ XT so that

∀i ∈ S, ∀dN\S ∈ XN\S, ui(aS,dN\S) ≥ vi

∀ j ∈ T, ∀dN\T ∈ XN\T, u j(bT,dN\T) ≥ v j.

Define the strategyzS∪T ∈ XS∪T of S ∪ T as follows.

1. zi = ai ∀i ∈ S \ T,

2. zi = bi ∀i ∈ T \ S,

3. zi = p(ai,bi) ∀i ∈ S ∩ T.

That is, players inS ∩ T are choosing less punishment dominant strategies
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amonga andb. Then, membersi ∈ S with zi = ai can assure the amount

of payoffs obtainable when any member inj ∈ S ∩ T takes the strategya j.

Indeed, for any playeri ∈ S with zi = ai, and anydN\(S∪T) ∈ XN\(S∪T), we

have

vi ≤ ui(ai,aS\{i},bT\S,dN\(S∪T))

≤ ui(ai,aS\(T∪{i}), zS∩T\{i},bT\S,dN\(S∪T))

= ui(zS∪T,dN\(S∪T)).

Similarly, playersi ∈ T can guarantee the amount of payoffs obtained when

any memberj ∈ S ∩ T takesb j:

vi ≤ ui(zS∪T,dN\(S∪T)) ∀i ∈ S ∪ T

Hence, we have thatv ∈ V(S ∪ T). �

Note that this result does not need the quasiconcavity of payoff functions.

Therefore, the class of games in this theorem can be different from that of
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Scarf [23].
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