Games in Characteristic Function Form

- 1. Chataceristic Function Form Games
 - $(N = \{1, 2, ..., n\}, v)$ $N = \{1, 2, ..., n\}$: set of players $v: 2^N \to \Re$: characteristic function 2^N : collection of subsets of $N, S \subseteq N$: coalition
 - v(S): the maximum payoff that a coalition S can guarantee
 - (N, v) is a **superadditive** game \Leftrightarrow for every $S, T \subset N, S \cap T = \emptyset, v(S) + v(T) < v(S \cup T)$
- 2. imputation
 - $x = (x_1, x_2, ..., x_n)$: payoff vector payoff vector $x = (x_1, x_2, ..., x_n)$ is an **imputation** \Leftrightarrow $\sum_{i=1}^n x_i = v(N)$ (efficiency, group rationality) $x_i \geq v(\{i\}) \ \forall i = 1, ..., n$ (individual rationality)
 - Set of imputations, A, can be expressed as $A = \{x = (x_1, x_2, ..., x_n) \in \Re^n | \sum_{i=1}^n x_i = v(N), x_i \ge v(\{i\}) \ \forall i = 1, ..., n\}$
- 3. Core
 - A set of imputations C is the **core** \Leftrightarrow $C = \{x \in A | \sum_{i \in S} x_i \ge v(S) \ \forall S \subseteq N \}$
 - $\sum_{i \in S} x_i \ge v(S)$: coalitional rationality
 - $e(S,x) = v(S) \sum_{i \in S} x_i$: excess of coalition S at imputation x
 - core \Leftrightarrow a set of imputations in which no coalition S has a positive excess value
 - Dominance Core
 - Dominance:

For two imputations $x, y \in A$, if there is a coalition $S \subseteq N$ such that the two conditions below are satisfied, then x is said to dominate y via coalition S, (noted as $x \ dom_S \ y$)

$$* x_i > y_i \ \forall i \in S$$

*
$$\sum_{i \in S} x_i \le v(S)$$

If there exists some S such that $x \ dom_S \ y$, then x is said to dominate y, written as $x \ dom \ y$.

- The set of imputations that are not dominated DC is called the **dominance** core. That is,

$$DC = \{x \in A | \text{there does not exist } y \in A \text{ such that } y \text{ dom } x\}$$

- $C \subseteq DC$ always holds.

- If (N, v) is superadditive, $DC \subseteq C$ also holds, and C = DC.
- 4. Nucleolous
 - For every $x \in A$, denote by $\theta(x)$ an ordered vector that orders the components of e(S, x) $(S \subseteq N, S \neq N, \emptyset)$ in descending order.

$$\theta(x) = (e(S_1, x), e(S_2, x), ..., e(S_{2^n - 2}))$$

$$e(S_1, x) \ge e(S_2, x) \ge ... \ge e(S_{2^n - 2})$$

- For any two imputations $x, y \in A$, x is more acceptable than $y \Leftrightarrow$
 - $\theta(y)$ is lexicographically greater than $\theta(x)$ (denoted $\theta(y) >_L \theta(x)$) \Leftrightarrow

there exists $k \in \{1, ..., 2^n - 2\}$ such that

$$\theta_i(x) = \theta_i(y) \ \forall i = 1, ..., k-1$$

 $\theta_k(x) < \theta_k(y)$

• A set of imputations L is the **nucleolus**

 $L = \{x \in A | \text{there is no } y \text{ such that } y \text{ is more acceptable than } x \}$

- The nucleolus always exists and contains exactly one element .
- If the core is nonempty, then the nucleolus is contained in the core.
- 5. Shapley value
 - Marginal contribution of player $i \in N$ towards coalition $S, i \notin S$

$$v(S \cup \{i\}) - v(S)$$

• given a permutation (or reordering) of players $\pi = (\pi(1), \pi(2), ..., \pi(n))$ contribution of player $\pi(k)$

$$v(\{\pi(1), ..., \pi(k-1), \pi(k)\}) - v(\{\pi(1), ..., \pi(k-1)\})$$

 $\pi(1), ..., \pi(k-1)$: players that precede $\pi(k)$ according to permutation π

• contribution of i with respect to permutation π

$$v(P^{\pi,i} \cup \{i\}) - v(P^{\pi,i})$$

 $P^{\pi,i}$: the set of players that precede i with respect to permutation π

• Shapley value of player i

$$\psi_i = \frac{1}{n!} \sum_{\pi \in \Pi} (v(P^{\pi,i} \cup \{i\}) - v(P^{\pi,i}))$$

 Π : set of all permutations

Shapley value

$$\psi = (\psi_1, ..., \psi_n)$$

assuming that a permutation of a set of n players (n! of them) occurs with equal probability, Shapley value is each player's expected contribution

- Shapley value satisfies efficiency.
 - If (N, v) is supseradditive, then the Shapley value is individually rational; thus, it is an imputation .
- An alternative expression of the Shapley value

$$\psi_i = \sum_{S: S \subseteq N, i \notin S} \frac{s!(n-s-1)!}{n!} (v(S \cup \{i\}) - v(S))$$

 $s = |S|$: number of players in coalition S

6. Axiomatization of the Shapley value

 \bullet Fix a set of players N, Denote by V the set of all superadditive characteristic functions $v:2^N\to\Re$.

For every game $(N, v), v \in V$, let ϕ be a function $\phi: V \to \Re^n$ and $\phi(v) = (\phi_1(v), ..., \phi_n(v))$.

- Axioms
 - (a) Efficiency

For every
$$v \in V$$
 , $\sum_{i \in N} \phi_i(v) = v(N)$

(b) Null Player Property

A player
$$i \in N$$
 is a **null player** $\Leftrightarrow v(S \cup \{i\}) - v(S) = 0 \ \forall S \subseteq N, i \notin S$
If player i is a null player, $\phi_i(v) = 0$

(c) Symmetry (Equal Treatment)

Players
$$i, j \in N$$
 are symmetric $\Leftrightarrow v(S \cup \{i\}) = v(S \cup \{j\}) \ \forall S \subseteq N, i, j \notin S$
If players i, j are symmetric, then $\phi_i(v) = \phi_j(v)$

(d) Additivity

For any two characteristic functions
$$v,u\in V$$
, define $w\in V$ by $w(S)=v(S)+u(S)$ $\forall S\subseteq N$.
Then, $\phi(w)=\phi(v)+\phi(u)$

• Theorem

There is only function ϕ that satisfies efficiency, no award for null players, symmetry, and additivity and for each game (N, v), ϕ is given by

$$\phi_{i}(v) = \sum_{S: S \subseteq N, i \notin S} \frac{s!(n-s-1)!}{n!} (v(S \cup \{i\}) - v(S)) \ \forall i \in N$$