Questions in Cooperative Game Theory

Through communication among players,

- 1 What coalitions will form?
- 2 How will payoffs be divided among players in the coalitions that are formed ?

Form : Games in Characteristic Function Form (Coalitional Form)

Coalitional Form Games

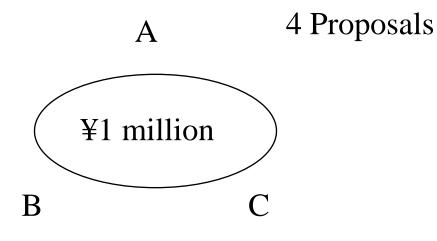
 $N = \{1, 2, \dots, n\} : set of players \\ S \subseteq N : Coalition$

- $v: 2^N \rightarrow \Re$: Characteristic Function (TU-games)
 - (2^N : set of subsets of N, \Re : set of real numbers)
 - v(S): the maximum payoff that coalition S can obtain for sure regardless of what N-S does

 $v(\emptyset) = 0$ (\emptyset : empty set)

(N, v) : Characteristic function form games(Coalitional form games)

Example 6-1



- 1 Divide between A and B
- **2** Divide between A and C
- **3** Divide between B and C
- 4 Divide among all three (renegotiate)

A, B, C each has one vote

Choose one by majority rule

Which coalition will form ?

How do they divide ¥1 million among themselves?

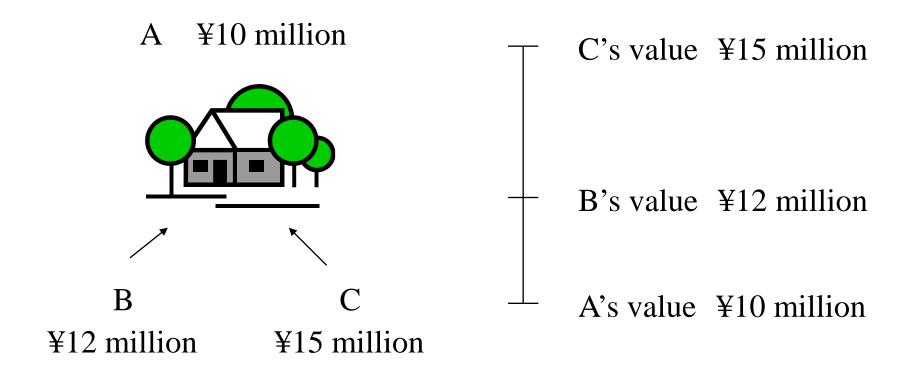
Ex 6-1 as a coalitional form game

Set of players: $N = \{A, B, C\}$

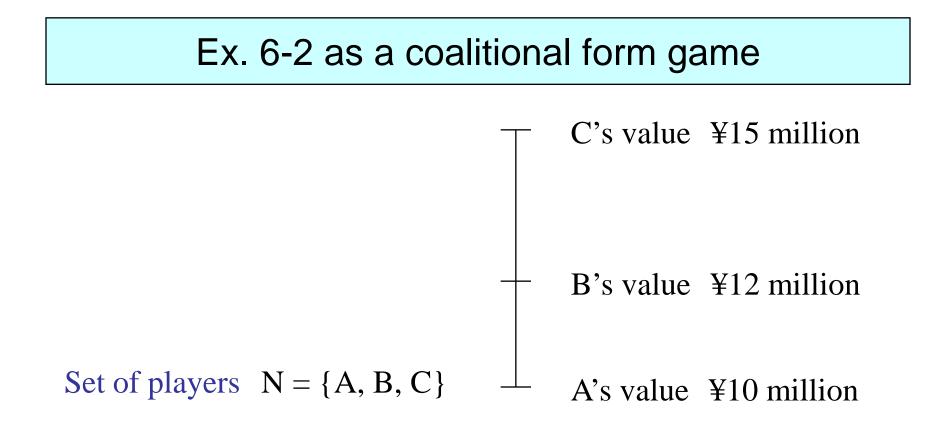
Characteristic function:

 $v(\{A,B,C\}) = 1,$ $v(\{A,B\}) = v(\{A,C\}) = v(\{B,C\}) = 1,$ $v(\{A\}) = v(\{B\}) = v(\{C\}) = 0$

Ex. 6-2



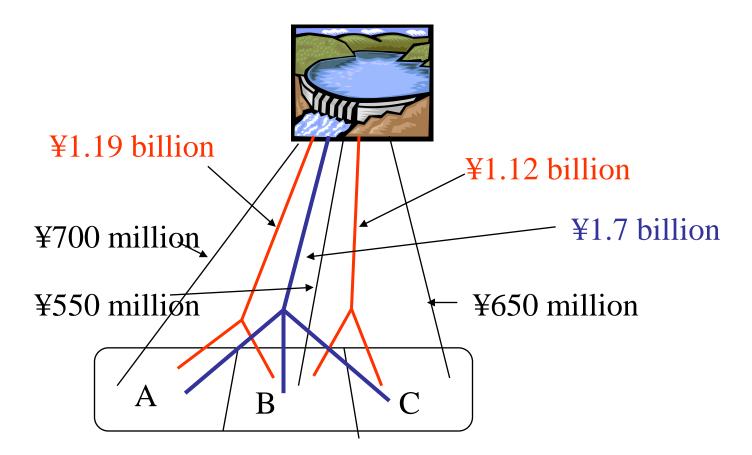
To whom (B or C) and what price will A's house be sold ?



Characteristic function:

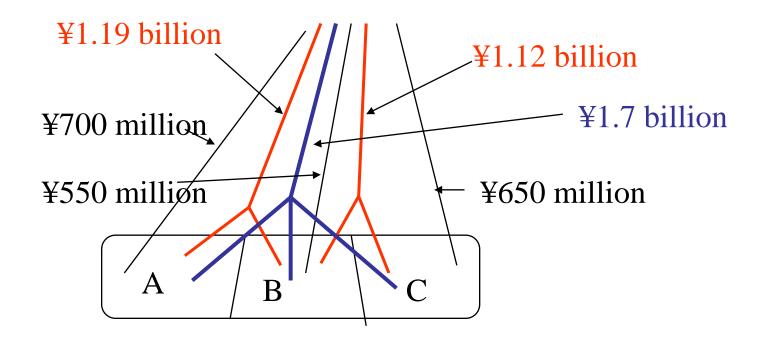
 $v(\{A,B,C\}) = 5,$ $v(\{A,B\}) = 2, v(\{A,C\}) = 5, v(\{B,C\}) = 0,$ $v(\{A\}) = v(\{B\}) = v(\{C\}) = 0$

Ex. 6-3



How will A,B, and C cooperate, and divide the joint costs?

Ex. 6-3 as a coalition form game



Set of players: $N = \{A, B, C\}$

Characteristic function: (cost reduction)

$$v({A,B,C}) = 20,$$

 $v({A,B}) = 6, v({A,C}) = 0, v({B,C}) = 8,$
 $v({A}) = v({B}) = v({C}) = 0$

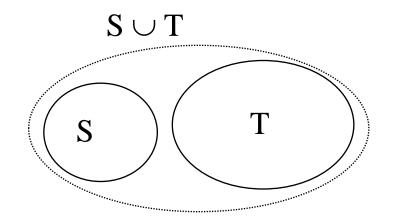
Superadditivity

Superadditivity

Characteristic function form game (N, v) is superadditive

$$\Leftrightarrow \text{ for every } S, T \text{ with } S \cap T = \emptyset$$

 $v(S) + v(T) \leq v(S \cup T)$



Ex. 6-3

Characteristic function of ex. 6-3

$$v(\{A,B,C\}) = 20,$$

$$v(\{A,B\}) = 6, v(\{A,C\}) = 0, v(\{B,C\}) = 8,$$

$$v(\{A\}) = v(\{B\}) = v(\{C\}) = 0$$

$$v(\{A,B\}) = 6 > 0 = v(\{A\}) + v(\{B\})$$
$$v(\{A,B,C\}) = 20 > 6 = v(\{A,B\}) + v(\{C\}) \text{ etc.}$$

Superadditivity and Grand Coalition Formation

Superadditivity

 \rightarrow grand coalition N will form

Questions in Cooperative Game Theory

- 1 What kind of coalitions will form ?
 - \rightarrow Assumed that grand coalition will form
- 2 How will payoffs be divided among players ?
 - \rightarrow cooperative game theory up until now

Recently, more focus on coalition formation

Imputation

How will payoffs be divided among players ?

Payoff vector : $\mathbf{x} = (x_1, x_2, \dots, x_n)$ x_i : i's payoff

Payoff vector : $\mathbf{x} = (x_1, x_2, \dots, x_n)$ is an imputation

1
$$x_1 + x_2 + \ldots + x_n = v(N)$$

- **2** $x_i \ge v(\{i\}) \quad \forall i = 1, 2, ..., n$
- 1 Pareto optimality (efficiency) or Group rationality
- **2** Individual rationality

Ex. 6-3 Imputation Set

$$N = \{A, B, C\}$$

$$v(\{A,B,C\}) = 20,$$

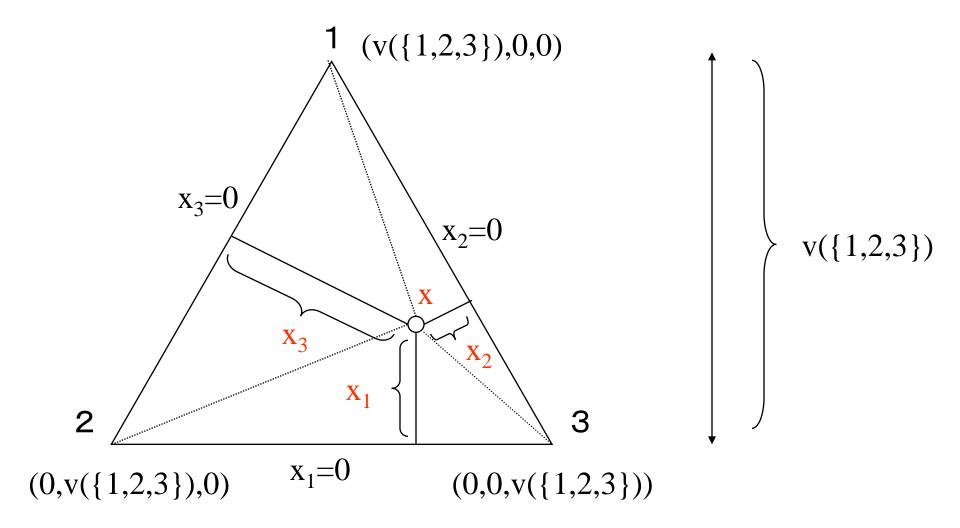
$$v(\{A,B\}) = 6, v(\{A,C\}) = 0, v(\{B,C\}) = 8,$$

$$v(\{A\}) = v(\{B\}) = v(\{C\}) = 0$$

Imputation Set

$$A = \{ x = (x_A, x_B, x_C) \mid x_A + x_B + x_C = 20, x_A, x_B, x_C \ge 0 \}$$

Diagram representing Imputation Set



Core

Imputation Set

$$A = \{ x = (x_1, \dots, x_n) \mid \sum_{i \in \mathbb{N}} x_i = v(\mathbb{N}), x_i \ge v(\{i\}) \; \forall i \in \mathbb{N} \}$$

Core
$$C = \{x = (x_1, ..., x_n) \mid \sum_{i \in \mathbb{N}} x_i = v(\mathbb{N}), x_i \ge v(\{i\}) \forall i \in \mathbb{N}$$

$$\sum_{i \in \mathbb{S}} x_i \ge v(\mathbb{S}) \forall \mathbb{S} \subseteq \mathbb{N} \}$$

$$\uparrow$$
Coalitional Rationality

excess of imputation x for coalition S (dissatisfaction of S for x) $e(S, x) = v(S) - \sum_{i \in S} x_i$

Core
$$C = \{x = (x_1, \dots, x_n) \mid \sum_{i \in N} x_i = v(N), x_i \ge v(\{i\}) \forall i \in N$$

 $e(S, x) \le 0 \forall S \subseteq N \}$

Core of Ex 6-1

Characteristic function $v(\{A,B,C\}) = 1$, $v(\{A,B\}) = v(\{A,C\}) = v(\{B,C\}) = 1$, $v(\{A\}) = v(\{B\}) = v(\{C\}) = 0$

Core
$$C = \{x = (x_A, x_B, x_C) \mid x_A + x_B + x_C = 1, x_A \ge 0, x_B \ge 0, x_C \ge 0, x_A + x_B \ge 1, x_A + x_C \ge 1, x_B + x_C \ge 1\}$$

 $x_A + x_B \ge 1, x_A + x_C \ge 1, x_B + x_C \ge 1 \rightarrow x_A + x_B + x_C \ge 3/2$ $\rightarrow x_A + x_B + x_C = 1$ (contradiction)

Core $C = \emptyset$

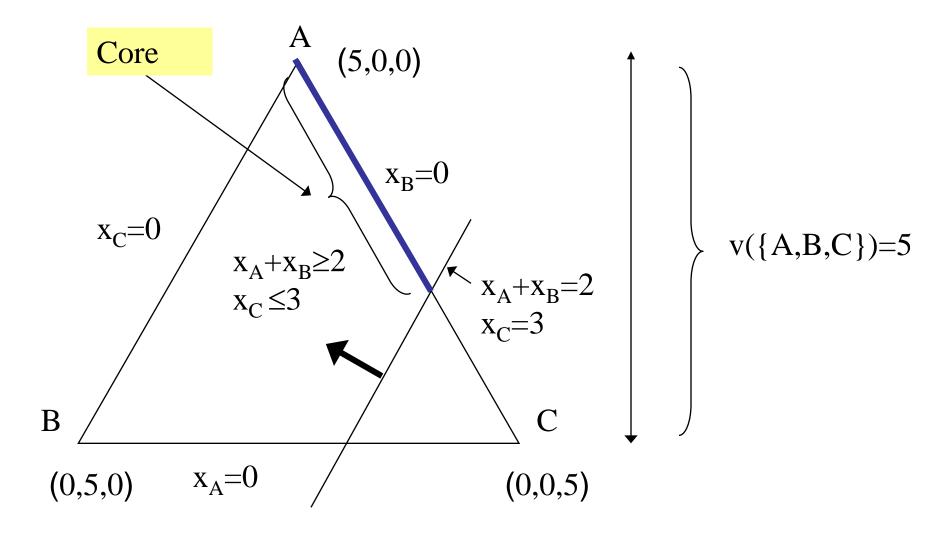
Core of Ex. 6-2

Characteristic function $v(\{A,B,C\}) = 5$, $v(\{A,B\}) = 2$, $v(\{A,C\}) = 5$, $v(\{B,C\}) = 0$, $v(\{A\}) = v(\{B\}) = v(\{C\}) = 0$ Core $C = \{x = (x_A, x_B, x_C) \mid x_A + x_B + x_C = 5, x_A \ge 0, x_B \ge 0, x_C \ge 0, x_A + x_B \ge 2, x_A + x_C \ge 5, x_B + x_C \ge 0 \}$ \downarrow

$$x_A + x_C = 5 \ (x_B = 0), \ x_A \ge 2$$

 $x_B = 0 \rightarrow \text{trade between A and C}$ $x_A \ge 2 \quad (x_C \le 3) \rightarrow \text{sold at a price of at least } \12 million

Illustration of the Core of Ex. 6-2

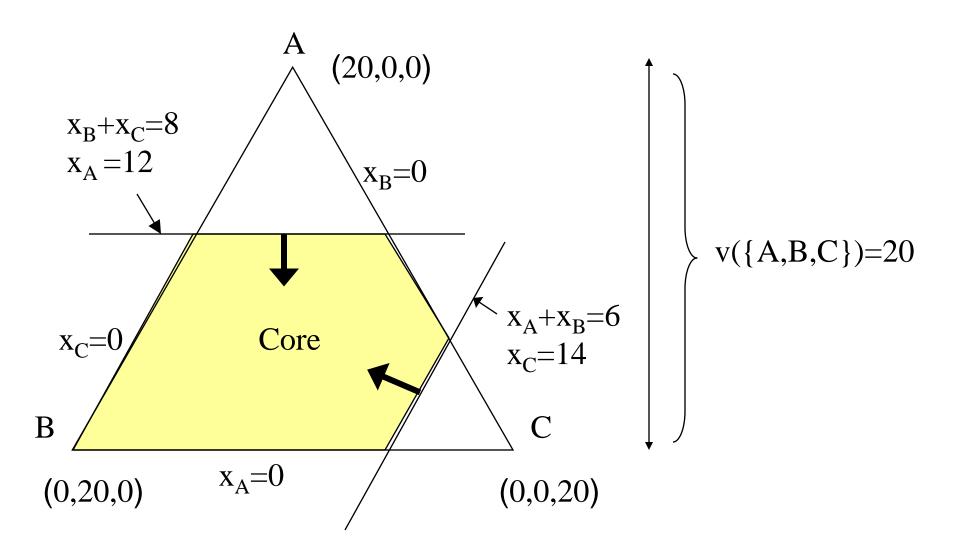


Characteristic function $v(\{A,B,C\}) = 20$, $v(\{A,B\}) = 6$, $v(\{A,C\}) = 0$, $v(\{B,C\}) = 8$, $v(\{A\}) = v(\{B\}) = v(\{C\}) = 0$

Core
$$C = \{x = (x_A, x_B, x_C) \mid x_A + x_B + x_C = 20, x_A \ge 0, x_B \ge 0, x_C \ge 0, x_A + x_B \ge 6, x_A + x_C \ge 0, x_B + x_C \ge 8 \}$$

Large Core \rightarrow contains (0,20,0), (6,0,14)

Illustration of the Core of Ex 6-3



Strengths and Weaknesses of the Core

Strengths: easy to understand

no coalition has an excess

Weaknesses: could be empty could be quite large

Using the concept of excess, is there a solution that always exists and is not too large ?

 \rightarrow Nucleololus

Assignment due next lecture

Reading assignment

"Introduction to Game Theory": pp. 161-179("Game Theory": pp.293 - 308)Handout: Multi-person cooperative game

Homework

Problem Set 2: #1, 2, 3 (core) (Use A4-size paper, and staple on the upper left-hand side)