Questions in Cooperative Game Theory

Through communication among players,
1 What coalitions will form?
2 How will payoffs be divided among players in the coalitions that are formed?

Form : Games in Characteristic Function Form (Coalitional Form)

Coalitional Form Games

$$
\begin{aligned}
\mathrm{N}=\{1,2, \ldots, \mathrm{n}\} & : \text { set of players } \\
& \mathrm{S} \subseteq \mathrm{~N}:
\end{aligned} \text { Coalition }
$$

$\mathrm{v}: 2^{\mathrm{N}} \rightarrow \Re: \quad$ Characteristic Function (TU-games)
(2^{N} : set of subsets of N, \mathfrak{R} : set of real numbers)
$\mathrm{v}(\mathrm{S})$: the maximum payoff that coalition S can obtain for sure regardless of what $\mathrm{N}-\mathrm{S}$ does

$$
\mathrm{v}(\varnothing)=0 \quad(\varnothing: \text { empty set })
$$

(N, v) : Characteristic function form games (Coalitional form games)

Example 6-1

Which coalition will form ?
How do they divide $¥ 1$ million among themselves?

Ex 6-1 as a coalitional form game

Set of players: $N=\{A, B, C\}$

Characteristic function:

$$
\begin{aligned}
& v(\{A, B, C\})=1, \\
& v(\{A, B\})=v(\{A, C\})=v(\{B, C\})=1, \\
& v(\{A\})=v(\{B\})=v(\{C\})=0
\end{aligned}
$$

Ex. 6-2

To whom (B or C) and what price will A's house be sold ?

Ex. 6-2 as a coalitional form game

Characteristic function:

$$
\begin{aligned}
& v(\{A, B, C\})=5, \\
& v(\{A, B\})=2, v(\{A, C\})=5, \quad v(\{B, C\})=0, \\
& v(\{A\})=v(\{B\})=v(\{C\})=0
\end{aligned}
$$

Ex. 6-3

How will A,B, and C cooperate, and divide the joint costs ?

Ex. 6-3 as a coalition form game

Set of players: $N=\{A, B, C\}$
Characteristic function: (cost reduction)

$$
\begin{aligned}
& v(\{A, B, C\})=20, \\
& v(\{A, B\})=6, v(\{A, C\})=0, \quad v(\{B, C\})=8, \\
& v(\{A\})=v(\{B\})=v(\{C\})=0
\end{aligned}
$$

Superadditivity

Superadditivity

Characteristic function form game (N, v) is superadditive
$\Leftrightarrow \quad$ for every S, T with $\mathrm{S} \cap \mathrm{T}=\varnothing$

$$
\mathrm{v}(\mathrm{~S})+\mathrm{v}(\mathrm{~T}) \leq \mathrm{v}(\mathrm{~S} \cup \mathrm{~T})
$$

Ex. 6-3

Characteristic function of ex. 6-3

$$
\begin{aligned}
& v(\{A, B, C\})=20, \\
& v(\{A, B\})=6, v(\{A, C\})=0, \quad v(\{B, C\})=8, \\
& v(\{A\})=v(\{B\})=v(\{C\})=0
\end{aligned}
$$

$$
\begin{aligned}
& v(\{A, B\})=6>0=v(\{A\})+v(\{B\}) \\
& v(\{A, B, C\})=20>6=v(\{A, B\})+v(\{C\}) \text { etc. }
\end{aligned}
$$

Superadditivity and Grand Coalition Formation

Superadditivity

\rightarrow grand coalition N will form

Questions in Cooperative Game Theory
1 What kind of coalitions will form ?
\rightarrow Assumed that grand coalition will form
2 How will payoffs be divided among players ?
\rightarrow cooperative game theory up until now
\downarrow
Recently, more focus on coalition formation

Imputation

How will payoffs be divided among players ?

Payoff vector : $\mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$
x_{i} : i’s payoff

Payoff vector : $\mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ is an imputation $1 \mathrm{x}_{1}+\mathrm{x}_{2}+\ldots+\mathrm{x}_{\mathrm{n}}=\mathrm{v}(\mathrm{N})$
$2 \quad \mathrm{X}_{\mathrm{i}} \geq \mathrm{v}(\{\mathrm{i}\}) \quad \forall \mathrm{i}=1,2, \ldots, \mathrm{n}$

1 Pareto optimality (efficiency) or Group rationality
2 Individual rationality

Ex. 6-3 Imputation Set

$$
\begin{aligned}
& N=\{A, B, C\} \\
& v(\{A, B, C\})=20, \\
& v(\{A, B\})=6, v(\{A, C\})=0, \quad v(\{B, C\})=8, \\
& v(\{A\})=v(\{B\})=v(\{C\})=0
\end{aligned}
$$

Imputation Set

$$
A=\left\{x=\left(x_{A}, x_{B}, x_{C}\right) \mid x_{A}+x_{B}+x_{C}=20, \quad x_{A}, x_{B}, x_{C} \geq 0\right\}
$$

Diagram representing Imputation Set

Core

Imputation Set

$$
A=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \mid \sum_{i \in N} x_{i}=v(N), \quad x_{i} \geq v(\{i\}) \forall i \in N\right\}
$$

Core $C=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \mid \sum_{i \in N} x_{i}=v(N), \quad x_{i} \geq v(\{i\}) \forall i \in N\right.$

$$
\begin{aligned}
& \sum_{i \in S} X_{i} \geq v(S) \\
& \uparrow
\end{aligned}
$$

Coalitional Rationality
excess of imputation x for coalition S (dissatisfaction of S for x)

$$
e(S, x)=v(S)-\sum_{i \in S} x_{i}
$$

Core $C=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \mid \sum_{i \in N} x_{i}=v(N), x_{i} \geq v(\{i\}) \forall i \in N\right.$

$$
\mathrm{e}(\mathrm{~S}, \mathrm{x}) \leq 0 \quad \forall \mathrm{~S} \subseteq \mathrm{~N}\}
$$

Core of Ex 6-1

Characteristic function $\quad \mathrm{v}(\{\mathrm{A}, \mathrm{B}, \mathrm{C}\})=1$,

$$
\begin{aligned}
& v(\{A, B\})=v(\{A, C\})=v(\{B, C\})=1, \\
& v(\{A\})=v(\{B\})=v(\{C\})=0
\end{aligned}
$$

Core $C=\left\{x=\left(x_{A}, x_{B}, x_{C}\right) \mid x_{A}+x_{B}+x_{C}=1, x_{A} \geq 0, x_{B} \geq 0, x_{C} \geq 0\right.$,

$$
\left.\mathrm{x}_{\mathrm{A}}+\mathrm{x}_{\mathrm{B}} \geq 1, \mathrm{x}_{\mathrm{A}}+\mathrm{x}_{\mathrm{C}} \geq 1, \mathrm{x}_{\mathrm{B}}+\mathrm{x}_{\mathrm{C}} \geq 1\right\}
$$

$$
\mathrm{x}_{\mathrm{A}}+\mathrm{x}_{\mathrm{B}} \geq 1, \mathrm{x}_{\mathrm{A}}+\mathrm{x}_{\mathrm{C}} \geq 1, \mathrm{x}_{\mathrm{B}}+\mathrm{x}_{\mathrm{C}} \geq 1 \rightarrow \mathrm{x}_{\mathrm{A}}+\mathrm{x}_{\mathrm{B}}+\mathrm{x}_{\mathrm{C}} \geq 3 / 2
$$

$$
\rightarrow \quad \mathrm{x}_{\mathrm{A}}+\mathrm{x}_{\mathrm{B}}+\mathrm{x}_{\mathrm{C}}=1 \text { (contradiction) }
$$

\downarrow
Core $C=\varnothing$

Core of Ex. 6-2

Characteristic function $\quad v(\{A, B, C\})=5$,

$$
\begin{aligned}
& \mathrm{v}(\{\mathrm{~A}, \mathrm{~B}\})=2, \mathrm{v}(\{\mathrm{~A}, \mathrm{C}\})=5, \quad \mathrm{v}(\{\mathrm{~B}, \mathrm{C}\})=0, \\
& \mathrm{v}(\{\mathrm{~A}\})=\mathrm{v}(\{\mathrm{~B}\})=\mathrm{v}(\{\mathrm{C}\})=0
\end{aligned}
$$

Core $C=\left\{x=\left(x_{A}, x_{B}, x_{C}\right) \mid x_{A}+x_{B}+x_{C}=5, x_{A} \geq 0, x_{B} \geq 0, x_{C} \geq 0\right.$,

$$
\left.\mathrm{x}_{\mathrm{A}}+\mathrm{x}_{\mathrm{B}} \geq 2, \mathrm{x}_{\mathrm{A}}+\mathrm{x}_{\mathrm{C}} \geq 5, \mathrm{x}_{\mathrm{B}}+\mathrm{x}_{\mathrm{C}} \geq 0\right\}
$$

$$
\downarrow
$$

$$
\mathrm{x}_{\mathrm{A}}+\mathrm{x}_{\mathrm{C}}=5\left(\mathrm{x}_{\mathrm{B}}=0\right), \mathrm{x}_{\mathrm{A}} \geq 2
$$

$\mathrm{X}_{\mathrm{B}}=0 \rightarrow$ trade between A and C
$x_{A} \geq 2\left(x_{C} \leq 3\right) \rightarrow$ sold at a price of at least $¥ 12$ million

Illustration of the Core of Ex. 6-2

Core of Ex 6-3

Characteristic function $\quad \mathrm{v}(\{\mathrm{A}, \mathrm{B}, \mathrm{C}\})=20$,

$$
\begin{aligned}
& \mathrm{v}(\{\mathrm{~A}, \mathrm{~B}\})=6, \mathrm{v}(\{\mathrm{~A}, \mathrm{C}\})=0, \quad \mathrm{v}(\{\mathrm{~B}, \mathrm{C}\})=8, \\
& \mathrm{v}(\{\mathrm{~A}\})=\mathrm{v}(\{\mathrm{~B}\})=\mathrm{v}(\{\mathrm{C}\})=0
\end{aligned}
$$

Core $C=\left\{x=\left(x_{A}, x_{B}, x_{C}\right) \mid x_{A}+x_{B}+x_{C}=20, x_{A} \geq 0, x_{B} \geq 0, x_{C} \geq 0\right.$,

$$
\left.\mathrm{x}_{\mathrm{A}}+\mathrm{x}_{\mathrm{B}} \geq 6, \mathrm{x}_{\mathrm{A}}+\mathrm{x}_{\mathrm{C}} \geq 0, \mathrm{x}_{\mathrm{B}}+\mathrm{x}_{\mathrm{C}} \geq 8\right\}
$$

Large Core \rightarrow contains (0,20,0), $(6,0,14)$

Illustration of the Core of Ex 6-3

Strengths and Weaknesses of the Core

Strengths: easy to understand no coalition has an excess

Weaknesses: could be empty could be quite large

Using the concept of excess, is there a solution that always exists and is not too large ?

$\rightarrow \quad$ Nucleololus

Assignment due next lecture

Reading assignment

"Introduction to Game Theory" : pp. 161-179
("Game Theory": pp.293-308)
Handout: Multi-person cooperative game

Homework
Problem Set 2: \#1, 2, 3 (core)
(Use A4-size paper, and staple on the upper left-hand side)

